Przejdź do zawartości
Merck

203602

Sigma-Aldrich

Lead(II) iodide

99.999% trace metals basis

Synonim(y):

Diiodolead, Plumbous iodide

Zaloguj sięWyświetlanie cen organizacyjnych i kontraktowych


About This Item

Wzór liniowy:
PbI2
Numer CAS:
Masa cząsteczkowa:
461.01
Numer WE:
Numer MDL:
Kod UNSPSC:
12352302
Identyfikator substancji w PubChem:
NACRES:
NA.23

Poziom jakości

Próba

99.999% trace metals basis

Postać

solid

przydatność reakcji

reagent type: catalyst
core: lead

zanieczyszczenia

≤15.0 ppm Trace Metal Analysis

tw

954 °C (lit.)

mp

402 °C (lit.)

gęstość

6.16 g/mL at 25 °C (lit.)

ciąg SMILES

I[PbH2]I

InChI

1S/2HI.Pb/h2*1H;/q;;+2/p-2

Klucz InChI

RQQRAHKHDFPBMC-UHFFFAOYSA-L

Szukasz podobnych produktów? Odwiedź Przewodnik dotyczący porównywania produktów

Opis ogólny

Lead(II) iodide (PbI2) is a compound with significant potential in the field of material science due to its unique characteristics, including its crystal structure, optical properties, and electronic behavior. Its applications in various areas such as photovoltaics, optoelectronics, and semiconductor devices, making it a subject of extensive research and development.,Lead iodide is a direct wide bandgap semiconductor with unique properties like high thermal conductivity, high electron saturation velocity, chemical stability, and wide temperature range operation capabilities (−200 °C up to +130 °C). Itis widely used as an x- and γ-ray detector, as it shows high absorption and carrier collection with minimal noise. PbI2 is also used in solar cells, bioimaging, and photoconductors.

Zastosowanie

Lead(II) iodide can be used as:      
  • A precursor salt in the fabrication of perovskite solar cells. The addition of a small molar excess of PbI2 to the precursor solution can enhance device performance by improving charge extraction.     
  • A potential electrode material in battery configurations due to its electrochemical properties. Its ability to undergo reversible reactions makes it a candidate for use in lead-based batteries.      
  • A key component in combination with lead monoxide (PbO) to create a stable and sensitive semiconductor detector material for non-destructive testing (NDT) radiation dose detection.      
  • A key component to develop X-ray detectors for medical imaging.      
  • To prepare cesium lead iodide perovskite quantum dots for highly stable LEDs.

This page may contain text that has been machine translated.

Hasło ostrzegawcze

Danger

Zwroty wskazujące rodzaj zagrożenia

Klasyfikacja zagrożeń

Acute Tox. 4 Inhalation - Acute Tox. 4 Oral - Aquatic Acute 1 - Aquatic Chronic 1 - Repr. 1A - STOT RE 2

Kod klasy składowania

6.1C - Combustible acute toxic Cat.3 / toxic compounds or compounds which causing chronic effects

Klasa zagrożenia wodnego (WGK)

WGK 3

Temperatura zapłonu (°F)

Not applicable

Temperatura zapłonu (°C)

Not applicable

Środki ochrony indywidualnej

Eyeshields, Gloves, type P3 (EN 143) respirator cartridges


Certyfikaty analizy (CoA)

Poszukaj Certyfikaty analizy (CoA), wpisując numer partii/serii produktów. Numery serii i partii można znaleźć na etykiecie produktu po słowach „seria” lub „partia”.

Masz już ten produkt?

Dokumenty związane z niedawno zakupionymi produktami zostały zamieszczone w Bibliotece dokumentów.

Odwiedź Bibliotekę dokumentów

Produkty

Since the first report of the low-cost dye-sensitized solar cell (DSSC) in 1991 by Gratzel and his coworker,1 dye-sensitized solar cells (DSSC) has been regarded as one of the most promising photovoltaic technologies because of their transparent and colorful characteristics, as well as low cost.

Colloidal quantum dots (CQDs) are semiconducting crystals of only a few nanometers (ca. 2–12 nm) coated with ligand/surfactant molecules to help prevent agglomeration.

The past several decades have seen major advancements in the synthesis of metal nanomaterials. Most recently, controlled synthesis has become versatile enough to regulate the exact number of atoms and ligands of very small metal nanoparticles, referred to as “clusters”.

Next generation solar cells have the potential to achieve conversion efficiencies beyond the Shockley-Queisser (S-Q) limit while also significantly lowering production costs.

Zobacz wszystko

Nasz zespół naukowców ma doświadczenie we wszystkich obszarach badań, w tym w naukach przyrodniczych, materiałoznawstwie, syntezie chemicznej, chromatografii, analityce i wielu innych dziedzinach.

Skontaktuj się z zespołem ds. pomocy technicznej