Pular para o conteúdo
Merck

Metformin inhibits growth of human glioblastoma cells and enhances therapeutic response.

PloS one (2015-04-14)
Julie Sesen, Perrine Dahan, Sarah J Scotland, Estelle Saland, Van-Thi Dang, Anthony Lemarié, Betty M Tyler, Henry Brem, Christine Toulas, Elizabeth Cohen-Jonathan Moyal, Jean-Emmanuel Sarry, Nicolas Skuli
RESUMO

High-grade gliomas, glioblastomas (GB), are refractory to conventional treatment combining surgery, chemotherapy, mainly temozolomide, and radiotherapy. This highlights an urgent need to develop novel therapies and increase the efficacy of radio/chemotherapy for these very aggressive and malignant brain tumors. Recently, tumor metabolism became an interesting potential therapeutic target in various cancers. Accordingly, combining drugs targeting cell metabolism with appropriate chemotherapeutic agents or radiotherapy has become attractive. In light of these perspectives, we were particularly interested in the anti-cancer properties of a biguanide molecule used for type 2 diabetes treatment, metformin. In our present work, we demonstrate that metformin decreases mitochondrial-dependent ATP production and oxygen consumption and increases lactate and glycolytic ATP production. We show that metformin induces decreased proliferation, cell cycle arrest, autophagy, apoptosis and cell death in vitro with a concomitant activation of AMPK, Redd1 and inhibition of the mTOR pathway. Cell sensitivity to metformin also depends on the genetic and mutational backgrounds of the different GB cells used in this study, particularly their PTEN status. Interestingly, knockdown of AMPK and Redd1 with siRNA partially, but incompletely, abrogates the induction of apoptosis by metformin suggesting both AMPK/Redd1-dependent and -independent effects. However, the primary determinant of the effect of metformin on cell growth is the genetic and mutational backgrounds of the glioma cells. We further demonstrate that metformin treatment in combination with temozolomide and/or irradiation induces a synergistic anti-tumoral response in glioma cell lines. Xenografts performed in nude mice demonstrate in vivo that metformin delays tumor growth. As current treatments for GB commonly fail to cure, the need for more effective therapeutic options is overwhelming. Based on these results, metformin could represent a potential enhancer of the cytotoxic effects of temozolomide and/or radiotherapy.

MATERIAIS
Número do produto
Marca
Descrição do produto

Sigma-Aldrich
Sacarose, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Sacarose, ≥99.5% (GC)
Sigma-Aldrich
Azul de triptano, 0.4%, liquid, sterile-filtered, suitable for cell culture
Sigma-Aldrich
Magnesium chloride solution, for molecular biology, 1.00 M±0.01 M
Sigma-Aldrich
Cloreto de magnésio, anhydrous, ≥98%
Sigma-Aldrich
Sacarose, ≥99.5% (GC), BioXtra
Sigma-Aldrich
Sacarose, BioUltra, for molecular biology, ≥99.5% (HPLC)
Sigma-Aldrich
Piruvato de sódio, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥99%
Sigma-Aldrich
Ácido etilenoglicol-bis(2-aminoetiléter)-N,N,N′,N′-tetracético, for molecular biology, ≥97.0%
Sigma-Aldrich
Carbonilcianeto 4-(trifluorometoxi)fenil-hidrazona, ≥98% (TLC), powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid solution, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Temozolomida, ≥98% (HPLC)
Sigma-Aldrich
Sacarose, ≥99.5% (GC), BioReagent, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
Sacarose, ≥99.5% (GC)
Sigma-Aldrich
Cloreto de magnésio, powder, <200 μm
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, crystalline, BioReagent, suitable for cell culture
Sigma-Aldrich
Ethylenediaminetetraacetic acid, 99.995% trace metals basis
Sigma-Aldrich
Trypan Blue, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
Sacarose, ≥99.5% (GC), Grade II, suitable for plant cell culture
Sigma-Aldrich
Magnesium chloride solution, BioUltra, for molecular biology, 2 M in H2O
Sigma-Aldrich
Piruvato de sódio, Hybri-Max, powder, suitable for hybridoma
Sigma-Aldrich
Sodium iodoacetate, ≥98%
Sigma-Aldrich
Cloreto de magnésio, BioReagent, suitable for insect cell culture, ≥97.0%
Sigma-Aldrich
Piruvato de sódio, powder, BioXtra, suitable for mouse embryo cell culture
Sigma-Aldrich
Sacarose, Grade I, ≥99% (GC), suitable for plant cell culture
Sigma-Aldrich
Sodium iodoacetate, BioUltra, ≥99.5% (NT)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ACS reagent, 99.4-100.6%, powder
Sigma-Aldrich
Magnesium chloride solution, PCR Reagent, 25 mM MgCI2 solution for PCR
Sigma-Aldrich
Sacarose, meets USP testing specifications
Sigma-Aldrich
Cloreto de magnésio, AnhydroBeads, −10 mesh, 99.9% trace metals basis