1分子カウント(SMC®)技術とは?
高感度イムノアッセイ技術の概要
高感度イムノアッセイ技術によって、研究をどのように促進できるでしょうか?1分子カウント (SMC®)技術によって、免疫学、心毒性、神経科学などの研究を進展させる方法をご紹介します。また、SMC®技術の利点や、研究者がこの高感度アッセイを使用してどのように研究を進めているかについてもご紹介します。
- SMC®技術とは?
- SMC®技術のワークフロー
- 高感度バイオマーカー検出プラットフォーム
- 研究アプリケーション
- SMC®技術の利点
- SMC®アッセイのヒントとコツ
- 関連のウェビナーおよびイベント
- SMC®技術を使用した文献
SMC®技術とは?
1分子カウント(SMC®)技術は、これまで検出できなかったバイオマーカーをフェムトグラムレベル(fg/mL)で検出することができる先進の高感度イムノアッセイ技術です。これは、研究者が生物学を前進させ、新しい治療法の発見と開発を促進するために必要不可欠なツールです。SMC®技術は、2004年にSingulex社によって開発されました。イムノアッセイのサンドイッチフォーマットを基にして、目的のアナライトに特異的な2つの抗体を使用します。1つはプレートまたは磁気ビーズにコートしたキャプチャ抗体で、もう1つは蛍光標識した検出抗体です。SMC®イムノアッセイ技術のみが、プレートベースとビーズベースの両方のアッセイ構築を可能とし、アッセイ構築に比類ない柔軟性をもたらします。
SMC®技術のワークフロー
ELISAなどの従来のイムノアッセイに慣れ親しんでいる研究者は、感度、マトリックス効果、ダイナミックレンジが測定方法または測定できるかどうかに影響することを理解しています。従来のイムノアッセイのワークフローと特許取得済みのSMC®技術を組み合わせることで、タンパク質や核酸など低濃度のバイオマーカーを、比類のない感度と精度で、フェムトグラムレベル(fg/mL)まで検出することができます。心筋トロポニンIやサイトカインなどの確立された疾患バイオマーカーを極めて低濃度で検出し、その変化をモニタリングすることができます。
SMC®技術のワークフローは、以下の5つのステップからなります。SMC®アッセイと従来のイムノアッセイの違いは、一度形成されたイムノアッセイ複合体を分解するために溶出バッファーを使用する点です。蛍光レポーター分子を含む溶出液を384ウェルプレートに移し、高いバックグラウンドの蛍光シグナルの原因となる他のアッセイ成分、例えばアナライトのキャプチャに使用した磁気ビーズや抗体などを除去します。そして、プレートを第2世代のSMC®システムであるSMCxPRO®システムにセットします。蛍光標識した検出抗体がレーザーの集積空間を通過すると、レーザーによって励起されます。個々のフォトンはアバランシェフォトダイオードでキャプチャされ、シグナルが記録されます。これにより、個々の分子のデジタル定量が可能になります。未知サンプル中のアナライト濃度は、対応する標準曲線を用いて計算されます。
SMC®技術のワークフローのステップ:
プレートまたはビーズ上でキャプチャ
検出
溶出
a. 複合体を化学的に分解
定量
a. サンプルをレーザーで検出、カウント
従来のサンドイッチELISA法のワークフローの後、SMC®独自のプロトコルステップで、蛍光標識検出抗体をサンドイッチ複合体から解離し、シグナル成分を濃縮します。蛍光標識検出抗体は、SMCxPRO®システムでシグナル取得されます。その結果、再現性のあるシグナルとなり、特に非常に低濃度のタンパク質の定量性が向上します。より良い精度と感度により、次のことが可能になります。
- これまで検出されなかったアナライトの定量
- サンプル集団の層別化の改善
- 新しい生物学的メカニズムの知見を得る
- より少ないデータポイントで重要な意思決定が可能
- 創薬・医薬品開発の加速
- コストの削減と生産性の向上
高感度バイオマーカー検出プラットフォーム
SMC®技術は、高感度なバイオマーカー検出のための、柔軟性の高いSMCxPRO®プラットフォームを提供します。表1は、このプラットフォームのアッセイと従来のELISA法との比較です。
SMC®ワークフローを強化する周辺機器・キット
SMCxPRO®プラットフォームを強化するために、以下のようなSMC®技術専用の周辺機器やキットも提供しています。
研究アプリケーション
高感度イムノアッセイによって感度が向上することで、研究者は研究をより掘り下げることができ、さまざまな分野の研究を推進することができます。SMC®技術の研究アプリケーションには、以下があります。
SMC®技術の利点
1分子カウント(SMC®)技術は、従来のELISA法と非常に類似したワークフローでありながら、最高のイムノアッセイ性能を提供
従来のELISA法は、感度やダイナミックレンジに限界があり、通常多くのサンプル量を必要とするため、マトリックス効果の影響を受けやすいです。これらの要因により、従来の ELISA 法では、健常者の低濃度タンパク質や内在性バイオマーカーの十分な検出ができず、試験群間における統計解析に支障をきたします。SMC®技術は、ELISAのワークフローを応用することで、従来のイムノアッセイ技術よりもS/N比を改善し、1つのシステムで低濃度と高濃度の両方のタンパク質の定量が可能となります。蛍光イベントのデジタルカウントにより、アッセイの感度が向上し、従来のイムノアッセイよりもダイナミックレンジが向上します。
SMC®イムノアッセイ技術は、フェムトグラムレベル(fg/mL)の感度を達成します。そのため、このプラットフォームでは、少量のサンプルしか入手できない前臨床のサンプルでも希釈して定量することが可能になります。
イムノアッセイのフィールドアプリケーションスペシャリストがオンサイトで、専門のテクニカルサービスチームがオフサイトでトータルサポート
私たちはSMC®プラットフォームがラボにとって重要な投資であることを理解し、研究者の成功のために尽力します。使用するアッセイの種類にかかわらず、すべてのSMC®ユーザーをイムノアッセイのフィールドアプリケーションスペシャリストがオンサイトでトータルサポートします。彼らは、アカデミア、政府機関、バイオテック、製薬、CRO、規制ラボなど、幅広いラボの研究者をサポートした経験があります。
SMC®プラットフォームは、バイオマーカー評価、薬物動態・薬力学試験、免疫原性試験など、複数の研究タイプに使用できる汎用性の高いシステム
カタログ品の検証済みアッセイキットに加え、SMC®カスタムアッセイ・サンプル測定 チームは、米国ミズーリ州セントルイスのラボにおいて、カスタムアッセイ開発、検証サービス、サンプル測定の受託サービスを行っています。
SMC®アッセイは、プレートベースとビーズベースの両方のフォーマットがあり、アッセイ開発が可能
独自のSMC®技術により、より高い精度でタンパク質を測定することができ、低濃度および高濃度で比類のない定量が可能になります。柔軟なSMC®イムノアッセイシステムは、プレートベースアッセイとビーズベースアッセイの両方からデータを取得し、予算や定量化の要件に応じてフォーマットを選択することが可能です。
SMC®アッセイ読み取りプレートは384ウェルプレートで、プレート全体を3時間以内に読み取ることができます。このハイスループットプラットフォームにより、サンプル調製からデータ解析までSMC®アッセイ全体を1日で行うことができます。
SMCxPRO®システムとHamilton Microlab™ STARletリキッドハンドリングシステムとの統合により、アッセイのスループットを向上
特定の環境では、SMC®イムノアッセイの自動化の要望があります。自動化により、研究者が他の重要な研究活動に集中でき、全体の効率を向上させることができます。Hamilton Microlab™ STARletリキッドハンドリングワークステーションは、エラーやばらつきの原因を排除し、堅牢で再現性のあるSMC®ワークフローのハンズフリーオプションを提供します。この自動化ワークフローは、カスタムアッセイ・サンプル測定チームによって日常的に使用されています。
1つのソフトウェアでデータの取得と解析を実行
SMCxPRO®ソフトウェアは自社開発されたもので、データ処理アルゴリズムの透明性が確保されています。このソフトウェアはユーザーフレンドリーであり、システムのセットアップ、プレートの読み取り、結果の解析を迅速かつ容易に行うことができます。また、マニュアルで外れ値を除くなど、データキュレーションも容易に行えます。
規制環境下のラボでは、SMCxPRO®システムはWATSONなどのラボ情報管理システム(LIMS)やその他のソフトウェアにインポート可能な1つのシグナルデータを生成します。また、21 CFR Part 11準拠の機能を有効にすることも可能です。
研究目的での使用に限定されます。診断目的では使用しないでください。
SMC®アッセイのヒントとコツ
SMC®アッセイの実施についてご質問がある場合は、こちらの記事をご確認ください。
関連ウェビナー
- SMC® Technology: Detect Biomarkers at Levels Previously Undetectable
- SMC® Technology: How Low Can You Go?
- Expert Panel Discussion: What does the future hold for biomarker R&D?
- A Sensitive Method to Quantify HIV-1 Antibody in Mucosal Samples
- Single Molecule Counting (SMC®) Technology Enables Acceleration of Drug Development Programs
SMC®技術を使用した文献
SMC®技術の活用方法について、研究分野ごとにまとめた下記の文献リストをご覧ください。
神経科学
- Increased levels of the synaptic proteins PSD-95, SNAP-25, and Neurogranin in the cerebrospinal fluid of patients with Alzheimer’s Disease.Kivisäkk P, Carlyle BC, Sweeney T, Quinn JP, Ramirez CE, Trombetta BA, Mendes M, Brock M, Rubel C, Czerkowicz J, et al. 2022 Feb 23. doi:10.21203/rs.3.rs-1366881/v1.
- A study of the longitudinal changes in multiple cerebrospinal fluid and volumetric magnetic resonance imaging biomarkers on converter and non‐converter Alzheimer’s disease subjects with consideration for their amyloid beta status. Morar U, Izquierdo W, Martin H, Forouzannezhad P, Zarafshan E, Unger E, Bursac Z, Cabrerizo M, Barreto A, Vaillancourt DE, et al. 2022.Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring.14(1). doi:10.1002/dad2.12258.
- The prognostic utility of CSF neurogranin in predicting future cognitive decline in the Alzheimer’s disease continuum: A systematic review and meta-analysis with narrative synthesis. Yoong SQ, Lu J, Xing H, Gyanwali B, Tan YQ, Wu XV.2021.Ageing Research Reviews.72:101491. doi:10.1016/j.arr.2021.101491.
- Biomarkers in Huntington’s. Killoran A. 2021 Oct 16.Neurodegenerative Diseases Biomarkers.:235–262. doi:10.1007/978-1-0716-1712-0_10.
- An ultra‐sensitive immunoassay detects and quantifies soluble Aβ oligomers in human plasma. Liu L, Kwak H, Lawton TL, Jin S, Meunier AL, Dang Y, Ostaszewski B, Pietras AC, Stern AM, Selkoe DJ.2021 Sep 22. Alzheimer’s & Dementia. doi:10.1002/alz.12457.
- BIOM-15.SERUM AMYLOID-β42 AS A NONINVASIVE BIOMARKER FOR PROGNOSIS AND HISTOLOGIC FEATURES OF GLIOMA. Hwang K, Noh M, Park J, Ji SY, Han JH, Ahn KS, Kim C-Y. 2021. Neuro-Oncology.23(Supplement_6):vi13–vi13. doi:10.1093/neuonc/noab196.046.
- Recent Technological Developments in the Diagnosis and Treatment of Cerebral Edema. Deshmukh KP, Rahmani Dabbagh S, Jiang N, Tasoglu S, Yetisen AK.2021.Advanced NanoBiomed Research.1(11):2100001. doi:10.1002/anbr.202100001.
- Widespread and sustained target engagement in Huntington’s disease minipigs upon intrastriatal microRNA-based gene therapy. Vallès A, Evers MM, Stam A, Sogorb-Gonzalez M, Brouwers C, Vendrell-Tornero C, Acar-Broekmans S, Paerels L, Klima J, Bohuslavova B, et al. 2021.Science Translational Medicine.13(588). doi:10.1126/scitranslmed.abb8920.
- Quantifying misfolded protein oligomers as drug targets and biomarkers in Alzheimer and Parkinson diseases. Kulenkampff K, Wolf Perez Adriana-M, Sormanni P, Habchi J, Vendruscolo M. 2021.Nature Reviews Chemistry.5(4):277–294. doi:10.1038/s41570-021-00254-9.
- Cognitively normal APOE ε4 carriers have specific elevation of CSF SNAP-25. Butt OH, Long JM, Henson RL, Herries E, Sutphen CL, Fagan AM, Cruchaga C, Ladenson JH, Holtzman DM, Morris JC, et al. 2021.Neurobiology of Aging.102:64–72. doi:10.1016/j.neurobiolaging.2021.02.008.
- Exogenous IGF-1 improves tau pathology and neuronal pyroptosis in high-fat diet mice with cognitive impairment. Sui G, Wang L, Yang C, Guo M, Xiong X, Chen Z, Wang F. 2021 Feb 11. doi:10.21203/rs.3.rs-158607/v1.
- Intrastriatal Administration of AAV5-miHTT in Non-Human Primates and Rats Is Well Tolerated and Results in miHTT Transgene Expression in Key Areas of Huntington Disease Pathology. Spronck EA, Vallès A, Lampen MH, Montenegro-Miranda PS, Keskin S, Heijink L, Evers MM, Petry H, Deventer SJ van, Konstantinova P, et al. 2021.Brain Sciences.11(2):129. doi:10.3390/brainsci11020129.
- Identification of Mild Cognitive Impairment Subtypes Predicting Conversion to Alzheimer’s Disease Using a Heterogeneous Mixture Learning. Kikuchi M, Kobayashi K, Itoh S, Kasuga K, Miyashita A, Ikeuchi T, Yumoto E, Fushimi Y, Takeda T, Manabe S, et al. 2020 Dec 17. doi:10.21203/rs.3.rs-129455/v1.
- TBK1 phosphorylates mutant Huntingtin and suppresses its aggregation and toxicity in Huntington’s disease models. Hegde RN, Chiki A, Petricca L, Martufi P, Arbez N, Mouchiroud L, Auwerx J, Landles C, Bates GP, Singh‐Bains MK, et al. 2020.The EMBO Journal.39(17). doi:10.15252/embj.2020104671.
- Identification of distinct conformations associated with monomers and fibril assemblies of mutant huntingtin. Ko J, Isas JM, Sabbaugh A, Yoo JH, Pandey NK, Chongtham A, Ladinsky M, Wu W-L, Rohweder H, Weiss A, et al. 2018.Human Molecular Genetics.27(13):2330–2343. doi:10.1093/hmg/ddy141.
- 0453 INFILTRATION OF VRC01 INTO THE CEREBROSPINAL FLUID IN HUMANS IN THE RV397 STUDY. Conference on Retroviruses and Opportunistic Infections Boston USA March 8-11, 2020.Madhuu Prabhakaran, Sandeep Narpala, Lucio Gama, Donn J. Colby, Phillip Chan, Carlo Sacdalan, Khunthalee Benjapornpong, Jintanat Ananworanich, Nittaya Phanupak, Suteeraporn Pinyakorn, Trevor A. Crowell, Serena Spudich, Adrian B McDermott on behalf of the RV397 study team
- Advances in amyloid beta oligomer detection applications in Alzheimer’s disease. Jamerlan A, An SSA, Hulme J. 2020.TrAC Trends in Analytical Chemistry.129:115919. doi:10.1016/j.trac.2020.115919.
- Ultrasensitive quantitative measurement of huntingtin phosphorylation at residue S13. Cariulo C, Verani M, Martufi P, Ingenito R, Finotto M, Deguire SM, Lavery DJ, Toledo-Sherman L, Lee R, Doherty EM, et al. 2020. Biochemical and Biophysical Research Communications.521(3):549–554. doi:10.1016/j.bbrc.2019.09.097.
- Target engagement in an alzheimer trial: Crenezumab lowers amyloid β oligomers in cerebrospinal fluid. Yang T, Dang Y, Ostaszewski B, Mengel D, Steffen V, Rabe C, Bittner T, Walsh DM, Selkoe DJ.2019.Annals of Neurology.86(2):215–224. doi:10.1002/ana.25513.
- Emerging cerebrospinal fluid biomarkers in autosomal dominant Alzheimer’s disease. Schindler SE, Li Y, Todd KW, Herries EM, Henson RL, Gray JD, Wang G, Graham DL, Shaw LM, Trojanowski JQ, et al. 2019.Alzheimer’s & Dementia.15(5):655–665. doi:10.1016/j.jalz.2018.12.019.
- D06 Quantitative assays to monitor huntingtin changes in pre-clinical and clinical hd samples. Kuhlbrodt K, Baldo B, Reindl W, Carty N, Tillack K, Berson N, Mack V, Bazenet C, Herrmann F, vanderKam E, et al. 2018 Sep. Wet biomarkers. doi:10.1136/jnnp-2018-ehdn.88.
- Decoding the synaptic dysfunction of bioactive human AD brain soluble Aβ to inspire novel therapeutic avenues for Alzheimer’s disease. Li S, Jin M, Liu L, Dang Y, Ostaszewski BL, Selkoe DJ.2018.Acta Neuropathologica Communications.6(1). doi:10.1186/s40478-018-0626-x.
- APOE ε4 is associated with higher levels of CSF SNAP-25 in prodromal Alzheimer’s disease. Wang S, Zhang J, Pan T. 2018.Neuroscience Letters.685:109–113. doi:10.1016/j.neulet.2018.08.029.
- AAV5-miHTT Gene Therapy Demonstrates Broad Distribution and Strong Human Mutant Huntingtin Lowering in a Huntington’s Disease Minipig Model. Evers MM, Miniarikova J, Juhas S, Vallès A, Bohuslavova B, Juhasova J, Skalnikova HK, Vodicka P, Valekova I, Brouwers C, et al. 2018.Molecular Therapy.26(9):2163–2177. doi:10.1016/j.ymthe.2018.06.021.
- Neurogranin as Cerebrospinal Fluid Biomarker for Alzheimer Disease: An Assay Comparison Study. Willemse EAJ, De Vos A, Herries EM, Andreasson U, Engelborghs S, van der Flier WM, Scheltens P, Crimmins D, Ladenson JH, Vanmechelen E, et al. 2018.Clinical Chemistry.64(6):927–937. doi:10.1373/clinchem.2017.283028.
- Longitudinal decreases in multiple cerebrospinal fluid biomarkers of neuronal injury in symptomatic late onset Alzheimer’s disease. Sutphen CL, McCue L, Herries EM, Xiong C, Ladenson JH, Holtzman DM, Fagan AM.2018.Alzheimer’s & Dementia.14(7):869–879. doi:10.1016/j.jalz.2018.01.012.
- A highly sensitive novel immunoassay specifically detects low levels of soluble Aβ oligomers in human cerebrospinal fluid. Yang T, O’Malley TT, Kanmert D, Jerecic J, Zieske LR, Zetterberg H, Hyman BT, Walsh DM, Selkoe DJ.2015.Alzheimer’s Research & Therapy.7(1):14. doi:10.1186/s13195-015-0100-y.
- Interleukin 17F Level and Interferon Beta Response in Patients With Multiple Sclerosis. Hartung H-P, Steinman L, Goodin DS, Comi G, Cook S, Filippi M, O’Connor P, Jeffery DR, Kappos L, Axtell R, et al. 2013.JAMA Neurology.70(8):1017. doi:10.1001/jamaneurol.2013.192.
免疫学/炎症/ウイルス学
- Efficacy, Safety, and Pharmacodynamic Effects of the Bruton’s Tyrosine Kinase Inhibitor Fenebrutinib (GDC‐0853) in Systemic Lupus Erythematosus: Results of a Phase II, Randomized, Double‐Blind, Placebo‐Controlled Trial. Isenberg D, Furie R, Jones NS, Guibord P, Galanter J, Lee C, McGregor A, Toth B, Rae J, Hwang O, et al. 2021.Arthritis & Rheumatology.73(10):1835–1846. doi:10.1002/art.41811.
- Proteomic signatures of inflammatory skin diseases: a focus on atopic dermatitis. Mikhaylov D, Del Duca E, Guttman-Yassky E. 2021.Expert Review of Proteomics.18(5):345–361. doi:10.1080/14789450.2021.1935247.
- Cardiovascular biomarkers in patients with COVID-19. Mueller C, Giannitsis E, Jaffe AS, Huber K, Mair J, Cullen L, Hammarsten O, Mills NL, Möckel M, Krychtiuk K, et al. 2021.European Heart Journal Acute Cardiovascular Care.10(3):310–319. doi:10.1093/ehjacc/zuab009.
- A sensitive method to quantify HIV-1 antibodies in mucosal samples. Prabhakaran M, Narpala S, Andrews SF, O’Connell S, Lin CL, Coates EE, Flach B, Ledgerwood JE, McDermott AB.2021. Journal of Immunological Methods.491:112995. doi:10.1016/j.jim.2021.112995.
- Pharmacodynamic analysis of apremilast in Japanese patients with moderate to severe psoriasis: Results from a phase 2b randomized trial. Imafuku S, Nemoto O, Okubo Y, Komine M, Schafer P, Petric R, Ohtsuki M. 2020.The Journal of Dermatology.48(1):80–84. doi:10.1111/1346-8138.15596.
- P273 Ustekinumab and guselkumab treatment results in differences in serum IL-17A, IL-17F and CRP levels in PsA patients: a comparison from ustekinumab Phase 3 and guselkumab Phase 2 programmes. Siebert S, Loza MJ, Song Q, Gorecki PC, McInnes IB, Sweet K. 2020.Rheumatology.59(Supplement_2). doi:10.1093/rheumatology/keaa111.266.
- Upadacitinib Treatment Induces Significant Improvements in Th2 (Eosinophil Count, Serum CCL17/18/26) and Th22 (IL-22) Levels in Atopic Dermatitis That Are Associated With Improvements in Itch and Clinical Severity.Presented at the Revolutionizing Atopic Dermatitis (RAD) 2020 Virtual Congress, April 5, 2020, Chicago, Illinois.Emma Guttman-Yassky, Ana B. Pavel, Jonathan I. Silverberg, Stephan Weidinger, Julie Parmentier, Henrique D. Teixeira, Feng Hong, Lisa A. Beck.
- Early Quantification of Systemic Inflammatory Proteins Predicts Long-Term Treatment Response to Tofacitinib and Etanercept. Tomalin LE, Kim J, Correa da Rosa J, Lee J, Fitz LJ, Berstein G, Valdez H, Wolk R, Krueger JG, Suárez-Fariñas M. 2020.Journal of Investigative Dermatology.140(5):1026–1034. doi:10.1016/j.jid.2019.09.023.
- Apremilast mechanism of efficacy in systemic-naive patients with moderate plaque psoriasis: Pharmacodynamic results from the UNVEIL study. Strober B, Alikhan A, Lockshin B, Shi R, Cirulli J, Schafer P. 2019.Journal of Dermatological Science.96(3):126–133. doi:10.1016/j.jdermsci.2019.09.003.
- Guselkumab Efficacy after Withdrawal Is Associated with Suppression of Serum IL-23-Regulated IL-17 and IL-22 in Psoriasis: VOYAGE 2 Study. Gordon KB, Armstrong AW, Foley P, Song M, Shen Y-K, Li S, Muñoz-Elías EJ, Branigan P, Liu X, Reich K. 2019.Journal of Investigative Dermatology.139(12):2437-2446.e1. doi:10.1016/j.jid.2019.05.016.
- Secukinumab Treatment Does Not Alter the Pharmacokinetics of the Cytochrome P450 3A4 Substrate Midazolam in Patients With Moderate to Severe Psoriasis. Bruin G, Hasselberg A, Koroleva I, Milojevic J, Calonder C, Soon R, Woessner R, Pariser DM, Boutouyrie‐Dumont B. 2019.Clinical Pharmacology & Therapeutics.106(6):1380–1388. doi:10.1002/cpt.1558.
- Impact of high‐altitude therapy on type‐2 immune responses in asthma patients. Boonpiyathad T, Capova G, Duchna H, Croxford AL, Farine H, Dreher A, Clozel M, Schreiber J, Kubena P, Lunjani N, et al. 2019.Allergy.75(1):84–94. doi:10.1111/all.13967.
- Combining single molecule counting with bead-based multiplexing to quantify biological inflammation time course following skeletal muscle injury. Tanner EA, Gary MA, Davis AA, McFarlin BK.2019.Methods.158:77–80. doi:10.1016/j.ymeth.2018.11.013.
- Profiling Immune Expression to Consider Repurposing Therapeutics for the Ichthyoses. Paller AS.2019.Journal of Investigative Dermatology.139(3):535–540. doi:10.1016/j.jid.2018.08.027.
- Clinical utility of circulating interleukin-6 concentrations in the detection of functionally relevant coronary artery disease. Walter J, Tanglay Y, du Fay de Lavallaz J, Strebel I, Boeddinghaus J, Twerenbold R, Doerflinger S, Puelacher C, Nestelberger T, Wussler D, et al. 2019.International Journal of Cardiology.275:20–25. doi:10.1016/j.ijcard.2018.10.029.
- Synergistic cytokine effects as apremilast response predictors in patients with psoriasis. Garcet S, Nograles K, Correa da Rosa J, Schafer PH, Krueger JG.2018.Journal of Allergy and Clinical Immunology.142(3):1010-1013.e6. doi:10.1016/j.jaci.2018.05.039.
- An integrated model of alopecia areata biomarkers highlights both TH1 and TH2 upregulation. Song T, Pavel AB, Wen H-C, Malik K, Estrada Y, Gonzalez J, Hashim PW, Nia JK, Baum D, Kimmel G, et al. 2018.Journal of Allergy and Clinical Immunology.142(5):1631-1634.e13. doi:10.1016/j.jaci.2018.06.029.
- Ichthyosis molecular fingerprinting shows profound TH17 skewing and a unique barrier genomic signature. Malik K, He H, Huynh TN, Tran G, Mueller K, Doytcheva K, Renert-Yuval Y, Czarnowicki T, Magidi S, Chou M, et al. 2019.Journal of Allergy and Clinical Immunology.143(2):604–618. doi:10.1016/j.jaci.2018.03.021.
- Association between serum interleukin-17A and clinical response to tofacitinib and etanercept in moderate to severe psoriasis. Fitz L, Zhang W, Soderstrom C, Fraser S, Lee J, Quazi A, Wolk R, Mebus CA, Valdez H, Berstein G. 2018.Clinical and Experimental Dermatology.43(7):790–797. doi:10.1111/ced.13561.
- The NET-effect of combining rituximab with belimumab in severe systemic lupus erythematosus. Kraaij T, Kamerling SWA, de Rooij ENM, van Daele PLA, Bredewold OW, Bakker JA, Bajema IM, Scherer HU, Toes REM, Huizinga TJW, et al. 2018.Journal of Autoimmunity.91:45–54. doi:10.1016/j.jaut.2018.03.003.
- Serum from Asian patients with atopic dermatitis is characterized by T H 2/T H 22 activation, which is highly correlated with nonlesional skin measures. Wen H-C, Czarnowicki T, Noda S, Malik K, Pavel AB, Nakajima S, Honda T, Shin JU, Lee H, Chou M, et al. 2018.Journal of Allergy and Clinical Immunology.142(1):324-328.e11. doi:10.1016/j.jaci.2018.02.047.
- Evaluation of highly sensitive immunoassay technologies for quantitative measurements of sub-pg/mL levels of cytokines in human serum. Yeung D, Ciotti S, Purushothama S, Gharakhani E, Kuesters G, Schlain B, Shen C, Donaldson D, Mikulskis A. 2016.Journal of Immunological Methods.437:53–63. doi:10.1016/j.jim.2016.08.003.
- Due diligence in the characterization of matrix effects in a total IL-13 Singulex® method. Fraser S, Soderstrom C. 2014.Bioanalysis.6(8):1123–1129. doi:10.4155/bio.14.42.
- Reference range and short- and long-term biological variation of interleukin (IL)-6, IL-17A and tissue necrosis factor-alpha using high sensitivity assays. Todd J, Simpson P, Estis J, Torres V, Wub AHB.2013.Cytokine.64(3):660–665. doi:10.1016/j.cyto.2013.09.018.
- Interleukin 17F Level and Interferon Beta Response in Patients With Multiple Sclerosis. Hartung H-P, Steinman L, Goodin DS, Comi G, Cook S, Filippi M, O’Connor P, Jeffery DR, Kappos L, Axtell R, et al. 2013.JAMA Neurology.70(8):1017. doi:10.1001/jamaneurol.2013.192.
- Quantitative determination of human interleukin 22 (IL-22) in serum using Singulex®-Erenna® Technology. Shukla R, Santoro J, Bender FC, Laterza OF.2013.Journal of Immunological Methods.390(1-2):30–34. doi:10.1016/j.jim.2013.01.002.
- Analytical validation of a highly sensitive microparticle-based immunoassay for the quantitation of IL-13 in human serum using the Erenna® immunoassay system. St.Ledger K, Agee SJ, Kasaian MT, Forlow SB, Durn BL, Minyard J, Lu QA, Todd J, Vesterqvist O, Burczynski ME.2009.Journal of Immunological Methods.350(1-2):161–170. doi:10.1016/j.jim.2009.08.012.
心血管
- Comparison of Point-of-Care and Highly Sensitive Laboratory Troponin Testing in Patients Suspicious of Acute Myocardial Infarction and Its Efficacy in Clinical Outcome. Mohammadzadeh S, Matani N, Soleimani N, Bazrafshan drissi H. 2022.Severino P, editor.Cardiology Research and Practice.2022:1–7. doi:10.1155/2022/6914979.
- A 0/1h-algorithm using cardiac myosin-binding protein C for early diagnosis of myocardial infarction. Kaier TE, Twerenbold R, Lopez-Ayala P, Nestelberger T, Boeddinghaus J, Alaour B, Huber I-M, Zhi Y, Koechlin L, Wussler D, et al. 2022 Feb 12.European Heart Journal Acute Cardiovascular Care. doi:10.1093/ehjacc/zuac007.
- Biological variation of cardiac myosin-binding protein C in healthy individuals. Alaour B, Omland T, Torsvik J, Kaier TE, Sylte MS, Strand H, Quraishi J, McGrath S, Williams L, Meex S, et al. 2021.Clinical Chemistry and Laboratory Medicine (CCLM).60(4):576–583. doi:10.1515/cclm-2021-0306.
- Cardiovascular biomarkers in patients with COVID-19. Mueller C, Giannitsis E, Jaffe AS, Huber K, Mair J, Cullen L, Hammarsten O, Mills NL, Möckel M, Krychtiuk K, et al. 2021.European Heart Journal Acute Cardiovascular Care.10(3):310–319. doi:10.1093/ehjacc/zuab009.
- Interleukin-6 and Outcomes in Acute Heart Failure: An ASCEND-HF Substudy. Perez AL, GRODIN JL, CHAIKIJURAJAI T, WU Y, HERNANDEZ AF, BUTLER J, METRA M, FELKER GM, VOORS AA, MCMURRAY JJ, et al. 2021.Journal of Cardiac Failure.27(6):670–676. doi:10.1016/j.cardfail.2021.01.006.
- Clinical relevance of biological variation of cardiac troponins. Clerico A, Padoan A, Zaninotto M, Passino C, Plebani M. 2020.Clinical Chemistry and Laboratory Medicine (CCLM).59(4):641–652. doi:10.1515/cclm-2020-1433.
- Biological Variation of Cardiac Troponins in Health and Disease: A Systematic Review and Meta-analysis. Diaz-Garzon J, Fernandez-Calle P, Sandberg S, Özcürümez M, Bartlett WA, Coskun A, Carobene A, Perich C, Simon M, Marques F, et al. 2021.Clinical Chemistry.67(1):256–264. doi:10.1093/clinchem/hvaa261.
- Early Rule-Out Strategies in the Emergency Department Utilizing High-Sensitivity Cardiac Troponin Assays. Lopez-Ayala P, Boeddinghaus J, Koechlin L, Nestelberger T, Mueller C. 2020. Clinical Chemistry.67(1):114–123. doi:10.1093/clinchem/hvaa226.
- Differential associations of cardiac troponin T and cardiac troponin I with coronary artery pathology and dynamics in response to short-duration exercise. Tveit SH, Cwikiel J, Myhre PL, Omland T, Berge E, Seljeflot I, Flaa A. 2021.Clinical Biochemistry.88:23–29. doi:10.1016/j.clinbiochem.2020.11.005.
- Advances in point-of-care testing for cardiovascular diseases. Regan B, O’Kennedy R, Collins D. 2021.Advances in Clinical Chemistry.:1–70. doi:10.1016/bs.acc.2020.09.001.
- Cardiac Myosin‐Binding Protein C to Diagnose Acute Myocardial Infarction in the Pre‐Hospital Setting. Kaier TE, Stengaard C, Marjot J, Sørensen JT, Alaour B, Stavropoulou‐Tatla S, Terkelsen CJ, Williams L, Thygesen K, Weber E, et al. 2019. Journal of the American Heart Association.8(15). doi:10.1161/jaha.119.013152.
- Clinical determinants of plasma cardiac biomarkers in patients with stable chest pain. Bing R, Henderson J, Hunter A, Williams MC, Moss AJ, Shah ASV, McAllister DA, Dweck MR, Newby DE, Mills NL, et al. 2019.Heart.105(22):1748–1754. doi:10.1136/heartjnl-2019-314892.
- Droplet digital PCR of serum miR-499, miR-21 and miR-208a for the detection of functionally relevant coronary artery disease. Hortmann M, Walter JE, Benning L, Follo M, Mayr RM, Honegger U, Robinson S, Stallmann D, Duerschmied D, Twerenbold R, et al. 2019.International Journal of Cardiology.275:129–135. doi:10.1016/j.ijcard.2018.08.031.
- High-sensitivity cardiac troponin T increases after stress echocardiography. Samaha E, Brown J, Brown F, Martinez SC, Scott M, Jaffe AS, Davila-Roman VG, Nagele P. 2019.Clinical Biochemistry.63:18–23. doi:10.1016/j.clinbiochem.2018.11.013.
- Clinical utility of circulating interleukin-6 concentrations in the detection of functionally relevant coronary artery disease. Walter J, Tanglay Y, du Fay de Lavallaz J, Strebel I, Boeddinghaus J, Twerenbold R, Doerflinger S, Puelacher C, Nestelberger T, Wussler D, et al. 2019.International Journal of Cardiology.275:20–25. doi:10.1016/j.ijcard.2018.10.029.
- DT‐02‐03: TARGET ENGAGEMENT IN AN AD TRIAL: CRENEZUMAB LOWERS Aβ OLIGOMER LEVELS IN CSF. Yang T, Dang Y, Ostaszewski B, Mengel D, Steffen V, Rabe C, Bittner T, Walsh DM, Selkoe DJ.2006.Alzheimer’s & Dementia.14(7S_Part_31). doi:10.1016/j.jalz.2018.07.012.
- 1086Derivation and validation of a 0/1h-algorithm to diagnose myocardial infarction using cardiac myosin-binding protein c - direct comparison to hs-cTnI. Kaier TE, Twerenbold R, Alaour B, Badertscher P, Puelacher C, Marjot J, Boeddinghaus J, Nestelberger T, Wildi K, Wussler D, et al. 2018.European Heart Journal.39(suppl_1). doi:10.1093/eurheartj/ehy565.1086.
- Screening for Cardiac Disease with Genetic Risk Scoring, Advanced ECG, Echocardiography, Protein Biomarkers and Metabolomics. Gladding P, Dugo C, Wynne Y, Semple H, Smith K, Shepherd P, Zarate E, Larsen P, Vilas-Boas S. 2018.Heart, Lung and Circulation.27:S8. doi:10.1016/j.hlc.2018.05.117.
- High-Sensitivity Cardiac Troponin I and the Diagnosis of Coronary Artery Disease in Patients With Suspected Angina Pectoris. Adamson PD, Hunter A, Madsen DM, Shah ASV, McAllister DA, Pawade TA, Williams MC, Berry C, Boon NA, Flather M, et al. 2018.Circulation: Cardiovascular Quality and Outcomes.11(2). doi:10.1161/circoutcomes.117.004227.
- Single‐Molecule Counting of High‐Sensitivity Troponin I in Patients Referred for Diagnostic Angiography: Results From the CASABLANCA (Catheter Sampled Blood Archive in Cardiovascular Diseases) Study. McCarthy CP, Ibrahim NE, Lyass A, Li Y, Gaggin HK, Simon ML, Mukai R, Gandhi P, Kelly N, Motiwala SR, et al. 2018.Journal of the American Heart Association.7(6). doi:10.1161/jaha.117.007975.
- Ultrasensitive label-free optical microfiber coupler biosensor for detection of cardiac troponin I based on interference turning point effect. Zhou W, Li K, Wei Y, Hao P, Chi M, Liu Y, Wu Y. 2018.Biosensors and Bioelectronics.106:99–104. doi:10.1016/j.bios.2018.01.061.
- CARDIAC TROPONIN I AND SUBCLINICAL CARDIOVASCULAR DISEASE. Joo E, Darabian S, Nozari Y, Vahoumeni R, Sheidaee N, Wade NB, Budoff M. 2018.Journal of the American College of Cardiology.71(11):A130. doi:10.1016/s0735-1097(18)30671-5.
- Prospective Validation of a Biomarker-Based Rule Out Strategy for Functionally Relevant Coronary Artery Disease. Walter JE, Honegger U, Puelacher C, Mueller D, Wagener M, Schaerli N, Strebel I, Twerenbold R, Boeddinghaus J, Nestelberger T, et al. 2018.Clinical Chemistry.64(2):386–395. doi:10.1373/clinchem.2017.277210.
- Comprehensive Age and Sex 99th Percentiles for a High-Sensitivity Cardiac Troponin I Assay. Estis J, Wu AHB, Todd J, Bishop J, Sandlund J, Kavsak PA.2018.Clinical Chemistry.64(2):398–399. doi:10.1373/clinchem.2017.276972.
- Prevalence, predictors and clinical outcome of residual congestion in acute decompensated heart failure. Rubio-Gracia J, Demissei BG, ter Maaten JM, Cleland JG, O’Connor CM, Metra M, Ponikowski P, Teerlink JR, Cotter G, Davison BA, et al. 2018.International Journal of Cardiology.International Journal of Cardiology.
- Quantifying the Release of Biomarkers of Myocardial Necrosis from Cardiac Myocytes and Intact Myocardium. Marjot J, Kaier TE, Martin ED, Reji SS, Copeland O, Iqbal M, Goodson B, Hamren S, Harding SE, Marber MS.2017.Clinical Chemistry.63(5):990–996. doi:10.1373/clinchem.2016.264648.
- Can a Point-of-Care Troponin I Assay be as Good as a Central Laboratory Assay? A MIDAS Investigation. Peacock WF, Diercks D, Birkhahn R, Singer AJ, Hollander JE, Nowak R, Safdar B, Miller CD, Peberdy M, Counselman F, et al. 2016.Annals of Laboratory Medicine.36(5):405–412. doi:10.3343/alm.2016.36.5.405.
- The development and application of a high-sensitivity immunoassay for cardiac myosin–binding protein C. Marjot J, Liebetrau C, Goodson RJ, Kaier T, Weber E, Heseltine P, Marber MS.2016.Translational Research.170:17-25.e5. doi:10.1016/j.trsl.2015.11.008.
- Longitudinal studies of cardiac troponin I concentrations in serum from male cynomolgus monkeys: resting values and effects of oral and intravenous dosing on biologic variability. Schultze AE, Anderson JM, Kern TG, Justus RW, Lee H-YC, Zieske LR, Goodson RJ, Florey SH.2015.Veterinary Clinical Pathology.44(3):465–471. doi:10.1111/vcp.12272.
- Prognostic performance of a high-sensitivity assay for cardiac troponin I after non-ST elevation acute coronary syndrome: Analysis from MERLIN-TIMI 36. Bonaca MP, O’Malley RG, Murphy SA, Jarolim P, Conrad MJ, Braunwald E, Sabatine MS, Morrow DA.2014.European Heart Journal: Acute Cardiovascular Care.4(5):431–440. doi:10.1177/2048872614564081.
- The utility of serum biomarkers to detect myocardial alterations induced by Imatinib in rats. Herman E, Knapton A, Zhang J, Estis J, Todd J, Lipshultz S. 2014.Pharmacology Research & Perspectives.2(1). doi:10.1002/prp2.15.
- Baseline Serum Cardiac Troponin I Concentrations in Sprague-Dawley, Spontaneous Hypertensive, Wistar, Wistar-Kyoto, and Fisher Rats as Determined with an Ultrasensitive Immunoassay. Herman E, Knapton A, Rosen E, Zhang J, Estis J, Agee SJ, Lu Q-A, Todd JA, Lipshultz SE.2011.Toxicologic Pathology.39(4):653–663. doi:10.1177/0192623311406931.
- Defining the serum 99th percentile in a normal reference population measured by a high-sensitivity cardiac troponin I assay. Apple FS, Simpson PA, Murakami MM.2010.Clinical Biochemistry.43(12):1034–1036. doi:10.1016/j.clinbiochem.2010.05.014.
- Assessment of the Toxicity of Hydralazine in the Rat Using an Ultrasensitive Flow-based Cardiac Troponin I Immunoassay.Mikaelian I, Coluccio D, Hirkaler GM, Downing JC, Rasmussen E, Todd J, Estis J, Lu QA, Nicklaus R. 2009. Toxicologic Pathology.37(7):878–881. doi:10.1177/0192623309351894.
- Ultrasensitive Cross-species Measurement of Cardiac Troponin-I Using the Erenna® Immunoassay System. Schultze AE, Konrad RJ, Credille KM, Lu QA, Todd J. 2008.Toxicologic Pathology.36(6):777–782. doi:10.1177/0192623308322016.
一般的なアプリケーション
- Ultra-sensitive AAV capsid detection by immunocapture-based qPCR following factor VIII gene transfer. Sandza K, Clark A, Koziol E, Akeefe H, Yang F, Holcomb J, Patton K, Hammon K, Mitchell N, Wong WY, et al. 2021.Gene Therapy.29(1-2):94–105. doi:10.1038/s41434-021-00287-1.
- The role of ligand-binding assay and LC–MS in the bioanalysis of complex protein and oligonucleotide therapeutics. Kotapati S, Deshpande M, Jashnani A, Thakkar D, Xu H, Dollinger G. 2021.Bioanalysis.13(11):931–954. doi:10.4155/bio-2021-0009.
- Quantitation of low abundant soluble biomarkers using high sensitivity Single Molecule Counting technology. Hwang J, Banerjee M, Venable AS, Walden Z, Jolly J, Zimmerman C, Adkisson E, Xiao Q. 2019.Methods.158:69–76. doi:10.1016/j.ymeth.2018.10.018.
- Standardized Immunomonitoring: Separating the Signals from the Noise. Duffy D. 2018. Trends in Biotechnology.36(11):1107–1115. doi:10.1016/j.tibtech.2018.06.002.
- Assay Formats: Recommendation for Best Practices and Harmonization from the Global Bioanalysis Consortium Harmonization Team. Dudal S, Baltrukonis D, Crisino R, Goyal MJ, Joyce A, Österlund K, Smeraglia J, Taniguchi Y, Yang J. 2013.The AAPS Journal.16(2):194–205. doi:10.1208/s12248-013-9552-9.
- Ultrasensitive Flow-based Immunoassays Using Single-Molecule Counting. Todd J, Freese B, Lu A, Held D, Morey J, Livingston R, Goix P. 2007.Clinical Chemistry.53(11):1990–1995. doi:10.1373/clinchem.2007.091181.
代謝/内分泌学
- Removal of Epididymal Visceral Adipose Tissue Prevents Obesity-Induced Multi-organ Insulin Resistance in Male Mice. Franczyk MP, He M, Yoshino J. 2021. Journal of the Endocrine Society.5(5). doi:10.1210/jendso/bvab024.
がん
- GDF-15 Neutralization Alleviates Platinum-Based Chemotherapy-Induced Emesis, Anorexia, and Weight Loss in Mice and Nonhuman Primates. Breen DM, Kim H, Bennett D, Calle RA, Collins S, Esquejo RM, He T, Joaquim S, Joyce A, Lambert M, et al. 2020.Cell Metabolism.32(6):938-950.e6. doi:10.1016/j.cmet.2020.10.023.
腎障害
- Variation in renal responses to exercise in the heat with progressive acclimatisation. Omassoli J, Hill NE, Woods DR, Delves SK, Fallowfield JL, Brett SJ, Wilson D, Corbett RW, Allsopp AJ, Stacey MJ.2019.Journal of Science and Medicine in Sport.22(9):1004–1009. doi:10.1016/j.jsams.2019.04.010.
研究目的での使用に限定されます。診断目的では使用しないでください。
続きを確認するには、ログインするか、新規登録が必要です。
アカウントをお持ちではありませんか?