コンテンツへスキップ
Merck
  • Abnormalities of whole body protein turnover, muscle metabolism and levels of metabolic hormones in patients with chronic heart failure.

Abnormalities of whole body protein turnover, muscle metabolism and levels of metabolic hormones in patients with chronic heart failure.

Journal of internal medicine (2006-06-23)
H Nørrelund, H Wiggers, M Halbirk, J Frystyk, A Flyvbjerg, H E Bøtker, O Schmitz, J O L Jørgensen, J S Christiansen, N Møller
要旨

It is well known that chronic heart failure (CHF) is associated with insulin resistance and cachexia, but little is known about the underlying substrate metabolism. The present study was undertaken to identify disturbances of basal glucose, lipid and protein metabolism. We studied eight nondiabetic patients with CHF (ejection fraction 30 +/- 4%) and eight healthy controls. Protein metabolism (whole body and regional muscle fluxes) and total glucose turnover were isotopically assayed. Substrate oxidation were obtained by indirect calorimetry. The metabolic response to exercise was studied by bicycle ergometry exercise. Our data confirm that CHF patients have a decreased lean body mass. CHF patients are characterised by (i) decreased glucose oxidation [glucose oxidation (mg kg(-1) min(-1)): 1.25 +/- 0.09 (patients) vs. 1.55 +/- 0.09 (controls), P < 0.01] and muscle glucose uptake [a - v diff(glucose) (micromol L(-1)): -10 +/- 25 (patients) vs. 70 +/- 22 (controls), P < 0.01], (ii) elevated levels of free fatty acids (FFA) [FFA (mmol L(-1)): 0.72 +/- 0.05 (patients) vs. 0.48 +/- 0.03 (controls), P < 0.01] and 3-hydroxybutyrate and signs of elevated fat oxidation and muscle fat utilization [a - v diff(FFA) (mmol L(-1)): 0.12 +/- 0.02 (patients) vs. 0.05 +/- 0.01 (controls), P < 0.05] and (iii) elevated protein turnover and protein breakdown [phenylalanine flux (micromol kg(-1) h(-1)): 36.4 +/- 1.5 (patients) vs. 29.6 +/- 1.3 (controls), P < 0.01]. Patients had high circulating levels of noradrenaline, glucagon, and adiponectin, and low levels of ghrelin. We failed to observe any differences in metabolic responses between controls and patients during short-term exercise. In the basal fasting state patients with CHF are characterized by several metabolic abnormalities which may contribute to CHF pathophysiology and may provide a basis for targeted intervention.

材料
製品番号
ブランド
製品内容

Sigma-Aldrich
L-グルタミン酸, ReagentPlus®, ≥99% (HPLC)
Sigma-Aldrich
L-ロイシン, reagent grade, ≥98% (HPLC)
Sigma-Aldrich
L-ロイシン, from non-animal source, meets EP, JP, USP testing specifications, suitable for cell culture, 98.5-101.0%
Sigma-Aldrich
L-メチオニン, from non-animal source, meets EP, JP, USP testing specifications, suitable for cell culture, 99.0-101.0%
Sigma-Aldrich
タウリン, ≥99%
Sigma-Aldrich
L-イソロイシン, from non-animal source, meets EP, JP, USP testing specifications, suitable for cell culture, 98.5-101.0%
Sigma-Aldrich
L-リシン, ≥98% (TLC)
Sigma-Aldrich
L-セリン, ReagentPlus®, ≥99% (HPLC)
Sigma-Aldrich
L-アラニン, ≥98% (TLC)
Sigma-Aldrich
L-チロシン, from non-animal source, meets EP, USP testing specifications, suitable for cell culture, 99.0-101.0%
Sigma-Aldrich
L-フェニルアラニン, from non-animal source, meets EP, JP, USP testing specifications, suitable for cell culture, 98.5-101.0%
Sigma-Aldrich
L-グルタミン酸, from non-animal source, meets EP testing specifications, suitable for cell culture, 98.5-100.5%
Sigma-Aldrich
L-セリン, from non-animal source, meets EP, USP testing specifications, suitable for cell culture, 98.5-101.0%
SAFC
L-メチオニン
Sigma-Aldrich
タウリン, suitable for cell culture, meets USP testing specifications
Sigma-Aldrich
L-トレオニン, from non-animal source, meets EP, JP, USP testing specifications, suitable for cell culture, 99.0-101.0%
Sigma-Aldrich
L-アラニン, from non-animal source, meets EP, USP testing specifications, suitable for cell culture, 98.5-101.0%
Sigma-Aldrich
L-イソロイシン, reagent grade, ≥98% (HPLC)
Sigma-Aldrich
L-メチオニン, reagent grade, ≥98% (HPLC)