Pular para o conteúdo
Merck
  • Convenient QSAR model for predicting the complexation of structurally diverse compounds with beta-cyclodextrins.

Convenient QSAR model for predicting the complexation of structurally diverse compounds with beta-cyclodextrins.

Bioorganic & medicinal chemistry (2008-12-06)
Alfonso Pérez-Garrido, Aliuska Morales Helguera, Adela Abellán Guillén, M Natália D S Cordeiro, Amalio Garrido Escudero
RESUMO

This paper reports a QSAR study for predicting the complexation of a large and heterogeneous variety of substances (233 organic compounds) with beta-cyclodextrins (beta-CDs). Several different theoretical molecular descriptors, calculated solely from the molecular structure of the compounds under investigation, and an efficient variable selection procedure, like the Genetic Algorithm, led to models with satisfactory global accuracy and predictivity. But the best-final QSAR model is based on Topological descriptors meanwhile offering a reasonable interpretation. This QSAR model was able to explain ca. 84% of the variance in the experimental activity, and displayed very good internal cross-validation statistics and predictivity on external data. It shows that the driving forces for CD complexation are mainly hydrophobic and steric (van der Waals) interactions. Thus, the results of our study provide a valuable tool for future screening and priority testing of beta-CDs guest molecules.

MATERIAIS
Número do produto
Marca
Descrição do produto

Sigma-Aldrich
Acetonitrilo, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Metanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Álcool etílico, puro, prova 200, for molecular biology
Sigma-Aldrich
2-propanol, suitable for HPLC, 99.9%
Sigma-Aldrich
Acetona, ACS reagent, ≥99.5%
Sigma-Aldrich
Tetra-hidrofurano, inhibitor-free, suitable for HPLC, ≥99.9%
Sigma-Aldrich
2-propanol, ACS reagent, ≥99.5%
Sigma-Aldrich
Metanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Álcool etílico, puro, 200 proof, ACS reagent, ≥99.5%
Sigma-Aldrich
Acetonitrilo, HPLC Plus, ≥99.9%
Sigma-Aldrich
Acetona, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Metanol, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Álcool etílico, puro, 200 proof
Sigma-Aldrich
Clorofórmio, contains 100-200 ppm amylenes as stabilizer, ≥99.5%
Sigma-Aldrich
Ethylene glycol, ReagentPlus®, ≥99%
Sigma-Aldrich
Acetona, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%
Sigma-Aldrich
Tetra-hidrofurano, contains 200-400 ppm BHT as inhibitor, ACS reagent, ≥99.0%
Sigma-Aldrich
Tolueno, ACS reagent, ≥99.5%
Sigma-Aldrich
Metanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Clorofórmio, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%, contains amylenes as stabilizer
Sigma-Aldrich
Tolueno, suitable for HPLC, 99.9%
Sigma-Aldrich
Clorofórmio, suitable for HPLC, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
1-propanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Tolueno, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%
Sigma-Aldrich
Álcool etílico, puro, 200 proof, meets USP testing specifications
Sigma-Aldrich
1-Butanol, 99.9%
Sigma-Aldrich
Acetona, Laboratory Reagent, ≥99.5%
Sigma-Aldrich
Dexametasona, powder, BioReagent, suitable for cell culture, ≥97%
Sigma-Aldrich
Clorofórmio, contains ethanol as stabilizer, ACS reagent, ≥99.8%
Sigma-Aldrich
Acetonitrilo, ACS reagent, ≥99.5%