Pular para o conteúdo
Merck
Todas as fotos(3)

Documentos Principais

450227

Sigma-Aldrich

Lithium hexafluorophosphate

greener alternative

battery grade, ≥99.99% trace metals basis

Sinônimo(s):

Lithium phosphorus fluoride

Faça loginpara ver os preços organizacionais e de contrato


About This Item

Fórmula linear:
LiPF6
Número CAS:
Peso molecular:
151.91
Número CE:
Número MDL:
Código UNSPSC:
12352302
ID de substância PubChem:
NACRES:
NA.23
Ensaio:
≥99.99% trace metals basis
grau:
battery grade
Formulário:
powder

grau

battery grade

Nível de qualidade

Ensaio

≥99.99% trace metals basis

Formulário

powder

características do produto alternativo mais ecológico

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

sustainability

Greener Alternative Product

Impurezas

≤100.0 ppm Trace Metal Analysis

pf

200 °C (dec.) (lit.)

aplicação(ões)

battery manufacturing

categoria alternativa mais ecológica

cadeia de caracteres SMILES

[Li+].F[P-](F)(F)(F)(F)F

InChI

1S/F6P.Li/c1-7(2,3,4,5)6;/q-1;+1

chave InChI

AXPLOJNSKRXQPA-UHFFFAOYSA-N

Procurando produtos similares? Visita Guia de comparação de produtos

Descrição geral

Lithium hexafluorophosphate (LiPF₆), battery grade, ≥99.99% trace metals basis comes as a white powder with trace metal impurities < 100.0 ppm. Lithium hexafluorophosphate is a class of electrolytic materials that can be used in the fabrication of lithium-ion batteries. Lithium-ion batteries consist of anode, cathode, and electrolyte with a charge-discharge cycle. These materials enable the formation of greener and sustainable batteries for electrical energy storage.

Aplicação

Lithium hexafluorophosphate (LiPF₆) battery grade is designed for battery research. It can be used in the research and development of lithium-ion batteries (LIBs). Its role as a primary electrolyte salt is pivotal due to its high ionic conductivity, electrochemical stability, and compatibility with a wide range of electrode materials. It helps in the formation of a stable solid electrolyte interphase (SEI) on the anode surface, which is essential for the longevity and stability of the battery, reducing the risk of thermal runaway and enhancing the overall safety of lithium-ion batteries. LiPF₆ can be used in the development of ionic liquid electrolytes, which offer advantages such as non-flammability and wider electrochemical windows.

Características e benefícios

The product is designed with stringent parameters to fulfill the research needs in batteries. It ensures minimal interference from contaminants in trace metal analysis, providing high-purity results.
  • Exceptional Purity: ≥99.99% purity minimizes contamination from trace metals, ensuring suitability for applications sensitive to even minute impurities.
  • Consistent Performance: Ultra-high purity guarantees consistent performance across various applications, reducing variability and enhancing reliability.
  • High Purity Standard: Ideal as a standard or reagent for trace metal analysis and high-precision analytical techniques, ensuring accurate and reliable results.
  • Battery grade for use in battery applications, ensuring suitability and performance.

Outras notas

We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product has been enhanced for energy efficiency. Find details here.

Preparation and characterization of lithium hexafluorophosphate for lithium-ion battery electrolyte.

Palavra indicadora

Danger

Frases de perigo

Classificações de perigo

Acute Tox. 3 Oral - Skin Corr. 1A - STOT RE 1 Inhalation

Órgãos-alvo

Bone,Teeth

Código de classe de armazenamento

6.1B - Non-combustible acute toxic Cat. 1 and 2 / very toxic hazardous materials

Classe de risco de água (WGK)

WGK 2

Ponto de fulgor (°F)

Not applicable

Ponto de fulgor (°C)

Not applicable

Equipamento de proteção individual

Eyeshields, Faceshields, Gloves, type P3 (EN 143) respirator cartridges


Escolha uma das versões mais recentes:

Certificados de análise (COA)

Lot/Batch Number

Não está vendo a versão correta?

Se precisar de uma versão específica, você pode procurar um certificado específico pelo número do lote ou da remessa.

Já possui este produto?

Encontre a documentação dos produtos que você adquiriu recentemente na biblioteca de documentos.

Visite a Biblioteca de Documentos

Proc. Power Sources Conf., 37th, 231-231 (1996)
Infrared spectroscopy studies on stability of dimethyl sulfoxide for application in a Li?air battery
Mozhzhukhina N, et al.
The Journal of Physical Chemistry C, 117(36), 18375-18380 (2013)
M D S Lekgoathi et al.
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, 153, 651-654 (2015-10-11)
The structure of LiPF6 has been probed using Raman scattering as well as pXRD and the results are compared and contrasted. The conventional Bragg angle scattering pXRD determines that dry LiPF6 crystallizes in a trigonal structure (Space Group R-3 (148))
Kewei Liu et al.
ACS nano, 9(6), 6041-6049 (2015-06-06)
The two-dimensional single-layer and few-layered graphene exhibit many attractive properties such as large specific surface area and high charge carrier mobility. However, graphene sheets tend to stack together and form aggregates, which do not possess the desirable properties associated with
Shijia Zhao et al.
Nanoscale, 7(5), 1984-1993 (2014-12-30)
Hydrogenated carbon nanomaterials exhibit many advantages in both mechanical and electrochemical properties, and thus have a wide range of potential applications. However, methods to control the hydrogenation and the effect of hydrogenation on the microstructure and properties of the produced

Artigos

Increasing fuel costs and concerns about greenhouse gas emissions have spurred the growth in sales of hybrid electric vehicles (HEVs) that carry a battery pack to supplement the performance of the internal combustion engine (ICE).

Dr. Sun reviews the recent advances in solid-state rechargeable batteries and cover the fundamentals of solid electrolytes in solid-state batteries, the theory of ion conduction, and the structures and electrochemical processes of solid-state Li batteries.

Research and development of solid-state lithium fast-ion conductors is crucial because they can be potentially used as solid electrolytes in all-solid-state batteries, which may solve the safety and energy-density related issues of conventional lithium-ion batteries that use liquid (farmable organic) electrolytes.

Electrode Materials for Lithium Ion Batteries

Ver tudo

Conteúdo relacionado

Batteries, fuel cells, and supercapacitors rely on electrochemical energy production. Understand their operation and electron/ion transport separation.

Nossa equipe de cientistas tem experiência em todas as áreas de pesquisa, incluindo Life Sciences, ciência de materiais, síntese química, cromatografia, química analítica e muitas outras.

Entre em contato com a assistência técnica