Skip to Content
MilliporeSigma
All Photos(1)

Documents

11074547001

Roche

Insulin-Transferrin-Sodium Selenite Supplement

suitable for cell culture, lyophilized, pkg of 50 mg (for 5 l medium)

Synonym(s):

ITS

Sign Into View Organizational & Contract Pricing


About This Item

UNSPSC Code:
12352207

biological source

human serum (transferrin)
synthetic (sodium selenite)

Quality Level

recombinant

expressed in human cells

sterility

non-sterile; 0.2 μm filtered

assay

>98% (Transferrin, SDS-PAGE)
>99% (Insulin, HPLC)
>99% (Sodium selenite)

form

lyophilized

packaging

pkg of 50 mg (for 5 l medium)

manufacturer/tradename

Roche

technique(s)

cell culture | mammalian: suitable

solubility

water: miscible

UniProt accession no.

storage temp.

2-8°C

Gene Information

bovine ... INS(280829)
human ... TFRC(7037)

General description

The Insulin-Transferrin-Sodium Selenite Supplement contains the most essential growth-promoting components of serum-free culture media in an optimized ratio.
Source: Insulin- bovine pancreas; transferrin- human serum; Sodium selenite-synthetic
The insulin-transferrin-sodium selenite (ITS) supplement comprises three of the most crucial growth factors for many cell types. Insulin is a component of serum-free media formulations for all primary cells and cell lines. It stimulates cell growth, increases fatty acid and glycogen synthesis in a serum-free medium. Transferrin is an essential growth factor for many cell types. Selenium is very often necessary for optimal cell growth. ITS permits an appreciable reduction in serum requirements for cellular growth. ITS is also an antioxidant that supports the growth of in vivo derived (IVD) embryos. Insulin promotes embryonic growth and metabolism. The iron transport in the embryo is mediated by transferrin. Sodium selenite protects from oxidative damage and inhibits lipid peroxidation. ITS is useful in human chondrocytes monolayer culture.

Application

The Insulin-Transferrin-Sodium Selenite Supplement is used in the cell culture media as a basal growth-factor supplement to which other cell type-specific nutrients and growth factors are added.

Preparation Note

Working concentration: Insulin, 5 μg/ml, transferrin, 5 μg/ml, sodium selenite, 5 ng/ml (3.0 x 10-8 M)

Storage conditions (working solution): -15 to -25 °C.
Prepare appropriate aliquots and avoid repeated freezing and thawing.

Reconstitution

The insulin-transferrin-sodium selenite supplement should be reconstituted in 5 ml or 25 ml sterile double-dist. water (1000 x concentrated stock solution).
Further dilution with culture medium.

Other Notes

For life science research only. Not for use in diagnostic procedures.

Storage Class

11 - Combustible Solids

wgk_germany

WGK 1

flash_point_f

does not flash

flash_point_c

does not flash


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Imran Khan et al.
Theriogenology, 152, 147-155 (2020-05-16)
Hypothermic storage of gametes and embryos at 4 °C can be used as an alternative to cryopreservation, but hypothermic preservation can maintain embryo viability for a short duration only. This study investigated the effect of insulin-transferrin-sodium selenite (ITS) in embryo culture
K H Chua et al.
European cells & materials, 9, 58-67 (2005-06-18)
This study was to investigate the effects of insulin-transferrin-selenium (ITS) on the proliferation and quantitative gene expression of adult human nasal septum chondrocytes in monolayer culture expansion and the formation of tissue engineered hyaline cartilage. Effects of ITS on human
Milu T Cherian et al.
The Journal of biological chemistry, 287(28), 23368-23380 (2012-05-17)
The androgen receptor (AR) has a critical role in the growth and progression of androgen-dependent and castration-resistant prostate cancers. To identify novel inhibitors of AR transactivation that block growth of prostate cancer cells, a luciferase-based high-throughput screen of ~160,000 small
Catherine Jane Messner et al.
International journal of molecular sciences, 22(18) (2021-09-29)
Liver fibrosis is characterized by the accumulation of extracellular matrix (ECM) resulting in the formation of fibrous scars. In the clinic, liver biopsies are the standard diagnostic method despite the potential for clinical complications. miRNAs are single-stranded, non-coding RNAs that
Jane Ying-Chieh Lee et al.
Frontiers in pharmacology, 7, 81-81 (2016-04-12)
SAHA is a class I HDAC/HDAC6 co-inhibitor and an autophagy inducer currently undergoing clinical investigations in breast cancer patients. However, the molecular mechanism of action of SAHA in breast cancer cells remains unclear. In this study, we found that SAHA

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service