Przejdź do zawartości
Merck

Harvest date affects aronia juice polyphenols, sugars, and antioxidant activity, but not anthocyanin stability.

Food chemistry (2015-05-16)
Bradley W Bolling, Rod Taheri, Ruisong Pei, Sarah Kranz, Mo Yu, Shelley N Durocher, Mark H Brand
ABSTRAKT

The goal of this work was to characterize how the date of harvest of 'Viking' aronia berry impacts juice pigmentation, sugars, and antioxidant activity. Aronia juice anthocyanins doubled at the fifth week of the harvest, and then decreased. Juice hydroxycinnamic acids decreased 33% from the first week, while proanthocyanidins increased 64%. Juice fructose and glucose plateaued at the fourth week, but sorbitol increased 40% to the seventh harvest week. Aronia juice pigment density increased due to anthocyanin concentration, and polyphenol copigmentation did not significantly affect juice pigmentation. Anthocyanin stability at pH 4.5 was similar between weeks. However, addition of quercetin, sorbitol, and chlorogenic acid to aronia anthocyanins inhibited pH-induced loss of color. Sorbitol and citric acid may be partially responsible for weekly variation in antioxidant activity, as addition of these agents inhibited DPPH scavenging 13-30%. Thus, aronia polyphenol and non-polyphenol components contribute to its colorant and antioxidant functionality.

MATERIAŁY
Numer produktu
Marka
Opis produktu

Sigma-Aldrich
L-Ascorbic acid, BioXtra, ≥99.0%, crystalline
Sigma-Aldrich
Ellagic acid, ≥95% (HPLC), powder, from tree bark
Sigma-Aldrich
(±)-Catechin hydrate
Sigma-Aldrich
L-Ascorbic acid, suitable for cell culture, suitable for plant cell culture, ≥98%
Sigma-Aldrich
L-Ascorbic acid, reagent grade
Sigma-Aldrich
Chlorogenic acid, ≥95% (titration)
Sigma-Aldrich
L-Ascorbic acid, BioUltra, ≥99.5% (RT)
Sigma-Aldrich
L-Ascorbic acid, puriss. p.a., ≥99.0% (RT)
Sigma-Aldrich
L-Ascorbic acid, reagent grade, crystalline
Sigma-Aldrich
L-Ascorbic acid, meets USP testing specifications
Sigma-Aldrich
L-Ascorbic acid, powder, suitable for cell culture, γ-irradiated
Sigma-Aldrich
L-Ascorbic acid, puriss. p.a., ACS reagent, reag. ISO, Ph. Eur., 99.7-100.5% (oxidimetric)
Sigma-Aldrich
L-Ascorbic acid, 99%
Sigma-Aldrich
L-Ascorbic acid, ACS reagent, ≥99%
Sigma-Aldrich
Quercetin, ≥95% (HPLC), solid
Sigma-Aldrich
L-Ascorbic acid, FCC, FG
Sigma-Aldrich
trans-Ferulic acid, ≥99%
Sigma-Aldrich
Citric acid, ACS reagent, ≥99.5%
Sigma-Aldrich
2-Hydroxybutyric acid sodium salt, 97%
Sigma-Aldrich
Citric acid, anhydrous, free-flowing, Redi-Dri, ACS reagent, ≥99.5%
Sigma-Aldrich
Sucrose, puriss., meets analytical specification of Ph. Eur., BP, NF
Sigma-Aldrich
trans-Stilbene, 96%
Sigma-Aldrich
Citric acid, ≥99.5%, FCC, FG
Sigma-Aldrich
Citric acid, BioUltra, anhydrous, ≥99.5% (T)
Sigma-Aldrich
(+)-Catechin hydrate, ≥96.0% (sum of enantiomers, HPLC)
Sigma-Aldrich
Sucrose, BioUltra, for molecular biology, ≥99.5% (HPLC)
Sigma-Aldrich
(+)-Catechin hydrate, ≥98% (HPLC), powder
Sigma-Aldrich
Sucrose, Grade I, ≥99% (GC), suitable for plant cell culture
Sigma-Aldrich
Sucrose, ≥99.5% (GC), BioXtra
Sigma-Aldrich
Sucrose, ≥99.5% (GC)