Przejdź do zawartości
Merck

901101

Sigma-Aldrich

TFB

greener alternative

Synonim(y):

Poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4′-(N-(4-sec-butylphenyl)diphenylamine)]

Zaloguj sięWyświetlanie cen organizacyjnych i kontraktowych


About This Item

Wzór liniowy:
(C51H61N)n
Numer CAS:
Kod UNSPSC:
12352116
NACRES:
NA.23

Postać

powder

Poziom jakości

masa cząsteczkowa

average Mw >30,000 by GPC

charakterystyka ekologicznej alternatywy

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

sustainability

Greener Alternative Product

kolor

yellow

mp

>300 °C

kategoria ekologicznej alternatywy

ciąg SMILES

CCCCCCCCC1(CCCCCCCC)C2=C(C=CC(C3=CC=C(N(C4=CC=C(C(CC)C)C=C4)C5=CC=C(C)C=C5)C=C3)=C2)C6=C1C=C(C)C=C6

InChI

1S/C53H67N/c1-7-10-12-14-16-18-36-53(37-19-17-15-13-11-8-2)51-38-41(5)22-34-49(51)50-35-27-45(39-52(50)53)44-25-32-48(33-26-44)54(46-28-20-40(4)21-29-46)47-30-23-43(24-31-47)42(6)9-3/h20-35,38-39,42H,7-19,36-37H2,1-6H3

Klucz InChI

LMXSDGRJIJNLIY-UHFFFAOYSA-N

Szukasz podobnych produktów? Odwiedź Przewodnik dotyczący porównywania produktów

Opis ogólny

TFB, a hole transporting material and an electron-blocking layer, has high hole mobility, low electron affinity, and high ionic potential. Its electron blocking nature results in effective confinement of injected charge carriers in the perovskite layers.
We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product belongs to Enabling category of greener alternatives thus aligns with "Design for energy efficency". Hole transport organic materials allow perfect energy level alignment with the absorber layer and therefore efficient charge collection, are prone to degradation in ambient conditions.Click here for more information.

Zastosowanie

TFB can be used in the formation of multilayer quantum dot-based light-emitting diodes (LEDs). It can also be used in the fabrication of highly responsive gas sensors for breath analysis.
Ta strona może zawierać tekst przetłumaczony maszynowo.

Kod klasy składowania

11 - Combustible Solids

Klasa zagrożenia wodnego (WGK)

WGK 3

Temperatura zapłonu (°F)

Not applicable

Temperatura zapłonu (°C)

Not applicable


Wybierz jedną z najnowszych wersji:

Certyfikaty analizy (CoA)

Lot/Batch Number

Nie widzisz odpowiedniej wersji?

Jeśli potrzebujesz konkretnej wersji, możesz wyszukać konkretny certyfikat według numeru partii lub serii.

Masz już ten produkt?

Dokumenty związane z niedawno zakupionymi produktami zostały zamieszczone w Bibliotece dokumentów.

Odwiedź Bibliotekę dokumentów

High-Efficiency Cu-In-S Quantum-Dot-Light-Emitting Device Exceeding 7%.
Kim JH, et al.
Chemistry of Materials, 28(17), 6329-6335 (2016)
Guangru Li et al.
Advanced materials (Deerfield Beach, Fla.), 28(18), 3528-3534 (2016-03-19)
The preparation of highly efficient perovskite nanocrystal light-emitting diodes is shown. A new trimethylaluminum vapor-based crosslinking method to render the nanocrystal films insoluble is applied. The resulting near-complete nanocrystal film coverage, coupled with the natural confinement of injected charges within
Bong Hoon Kim et al.
ACS nano, 10(5), 4920-4925 (2016-04-15)
Here, we report multilayer stacking of films of quantum dots (QDs) for the purpose of tailoring the energy band alignment between charge transport layers and light emitting layers of different color in quantum dot light-emitting diodes (QD LED) for maximum

Produkty

Advances in the area of soft optoelectronics, with a focus on the development of organic optoelectronic devices on shape memory polymers (SMP) is discussed.

Nasz zespół naukowców ma doświadczenie we wszystkich obszarach badań, w tym w naukach przyrodniczych, materiałoznawstwie, syntezie chemicznej, chromatografii, analityce i wielu innych dziedzinach.

Skontaktuj się z zespołem ds. pomocy technicznej