コンテンツへスキップ
Merck
  • Optimization of microwave-assisted extraction of polyphenols from herbal teas and evaluation of their in vitro hypochlorous acid scavenging activity.

Optimization of microwave-assisted extraction of polyphenols from herbal teas and evaluation of their in vitro hypochlorous acid scavenging activity.

Journal of agricultural and food chemistry (2014-11-05)
Burcu Bekdeşer, Nazan Durusoy, Mustafa Özyürek, Kubilay Güçlü, Reşat Apak
要旨

Hypochlorous acid (HOCl) is an important reactive oxygen species (ROS) and non-radical and is taking part in physiological processes concerned with the defense of the organism, but there has been limited information regarding its scavenging by polyphenols. This study was designed to examine the HOCl scavenging activity of several polyphenols and microwave-assisted extracts of herbal teas. HOCl scavenging activity has usually been determined spectrophotometrically by a KI/taurine assay at 350 nm. Because some polyphenols (i.e., apigenin and chrysin) have a strong ultraviolet (UV) absorption in this range, their HOCl scavenging activity was alternatively determined without interference using resorcinol (1,3-dihydroxybenzene) as a fluorogenic probe. In the present assay, HOCl induces the chlorination of resorcinol into its non-fluorescent products. Polyphenols as HOCl scavengers inhibit the chlorination of the probe by this species. Thus, the 25% inhibitive concentration (IC25) value of polyphenols was determined using the relative increase in fluorescence intensity of the resorcinol probe. The HOCl scavenging activities of the test compounds decreased in the order: epigallocatechin gallate > quercetin > gallic acid > rutin > catechin > kaempferol. The present study revealed that epigallocatechin gallate (IC25 = 0.1 μM) was the most effective scavenging agent. In addition to polyphenols, four herbal teas were evaluated for their HOCl activity using the resorcinol method. The proposed spectrofluorometric method was practical, rapid, and less open to interferences by absorbing substances in the range of 200-420 nm. The results hint to the possibility of polyphenols having beneficial effects in diseases, such as atherosclerosis, in which HOCl plays a pathogenic role.

材料
製品番号
ブランド
製品内容

Sigma-Aldrich
メタノール, suitable for HPLC, ≥99.9%
Sigma-Aldrich
エチルアルコール(純粋), 200 proof, for molecular biology
Sigma-Aldrich
メタノール, ACS reagent, ≥99.8%
Sigma-Aldrich
酢酸, glacial, ACS reagent, ≥99.7%
Sigma-Aldrich
メタノール, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
酢酸, glacial, ReagentPlus®, ≥99%
Sigma-Aldrich
次亜塩素酸ナトリウム 溶液, reagent grade, available chlorine 4.00-4.99 %
Sigma-Aldrich
ヨウ化カリウム, ACS reagent, ≥99.0%
Sigma-Aldrich
メタノール, HPLC Plus, ≥99.9%
Sigma-Aldrich
ヨウ化カリウム, ReagentPlus®, 99%
Sigma-Aldrich
酢酸, glacial, ≥99.99% trace metals basis
Sigma-Aldrich
ケルセチン, ≥95% (HPLC), solid
Sigma-Aldrich
メタノール, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
酢酸 溶液, suitable for HPLC
Sigma-Aldrich
メタノール, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
酢酸, glacial, puriss., meets analytical specification of Ph. Eur., BP, USP, FCC, 99.8-100.5%
Sigma-Aldrich
メタノール, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
ヨウ化カリウム, anhydrous, free-flowing, Redi-Dri, ACS reagent, ≥99%
Sigma-Aldrich
エタノール, JIS special grade, ≥99.5%
Sigma-Aldrich
タウリン, ≥99%
Sigma-Aldrich
没食子酸, 97.5-102.5% (titration)
Sigma-Aldrich
次亜塩素酸ナトリウム 溶液, CP
Sigma-Aldrich
p-クマル酸, ≥98.0% (HPLC)
Sigma-Aldrich
クロロゲン酸, ≥95% (titration)
Sigma-Aldrich
メタノール, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
メタノール, BioReagent, ≥99.93%
Sigma-Aldrich
メタノール, ACS reagent, ≥99.8%
Sigma-Aldrich
(−)-エピガロカテキンガラート, ≥95%
Sigma-Aldrich
メタノール, Absolute - Acetone free
Sigma-Aldrich
ケンフェロール, ≥97.0% (HPLC)