Passa al contenuto
Merck

Nitrotriazole- and imidazole-based amides and sulfonamides as antitubercular agents.

Antimicrobial agents and chemotherapy (2014-09-04)
Maria V Papadopoulou, William D Bloomer, Howard S Rosenzweig, Alexander Arena, Francisco Arrieta, Joseph C J Rebolledo, Diane K Smith
ABSTRACT

Twenty-three 3-nitrotriazole-based and 2-nitroimidazole-based amides and sulfonamides were screened for antitubercular (anti-TB) activity in aerobic Mycobacterium tuberculosis H37Rv by using the BacTiter-Glo (BTG) microbial cell viability assay. In general, 3-nitrotriazole-based sulfonamides demonstrated anti-TB activity, whereas 3-nitrotriazole-based amides and 2-nitroimidazole-based amides and sulfonamides were inactive. Three 3-nitrotriazole-based sulfonamides (compounds 4, 2, and 7) demonstrated 50% inhibitory concentration (IC50), IC90, and MIC values of 0.38, 0.43, and 1.56 μM (compound 4), 0.57, 0.98, and 3.13 μM (compound 2), and 0.79, 0.87, and 3.13 μM (compound 7), respectively. For 3-nitrotriazole-based sulfonamides, anti-TB activity increased with lipophilicity, whereas the one-electron reduction potential (E1/2) did not play a role. 2-Nitroimidazole-based analogs, which were inactive in the BTG assay, were significantly more active in the low-oxygen assay and more active than the 3-nitrotriazoles. All active nitrotriazoles in the BTG assay were similarly active or more potent (lower MIC values) against resistant strains, with the exception of compounds 2, 3, 4, and 8, which demonstrated greater MIC values against isoniazid-resistant strains. Five 3-nitrotriazole-based sulfonamides demonstrated activity in infected murine J774 macrophages, causing log reductions similar to those seen with rifampin. However, some compounds caused toxicity in uninfected macrophages. In conclusion, the classes of 3-nitrotriazole-based amides and sulfonamides merit further investigation as potential antitubercular agents.

MATERIALI
N° Catalogo
Marchio
Descrizione del prodotto

Sigma-Aldrich
Glicerolo, ACS reagent, ≥99.5%
Sigma-Aldrich
Glicerolo, for molecular biology, ≥99.0%
Sigma-Aldrich
Glicerolo, ReagentPlus®, ≥99.0% (GC)
Sigma-Aldrich
D-(+)-Glucosio, ≥99.5% (GC)
Sigma-Aldrich
D-(+)-Glucosio, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99.5%
Sigma-Aldrich
D-(+)-Glucosio, 97.5-102.0% anhydrous basis, meets EP, BP, JP, USP testing specifications
Sigma-Aldrich
D-(+)-Glucosio, ≥99.5% (GC), BioXtra
Sigma-Aldrich
Glicerolo, 83.5-89.5% (T)
USP
Destrosio, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Glicerolo, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for electrophoresis, ≥99% (GC)
Sigma-Aldrich
Glicerolo, BioUltra, for molecular biology, anhydrous, ≥99.5% (GC)
Sigma-Aldrich
Glicerolo, puriss., anhydrous, 99.0-101.0% (alkalimetric)
USP
Glicerina, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
D-(+)-Glucosio, BioUltra, anhydrous, ≥99.5% (sum of enantiomers, HPLC)
Sigma-Aldrich
Glicerolo, FCC, FG
Sigma-Aldrich
Glicerolo, puriss. p.a., ACS reagent, anhydrous, dist., ≥99.5% (GC)
Supelco
D-(+)-Glucosio, analytical standard
Sigma-Aldrich
D-(+)-Glucosio, suitable for mouse embryo cell culture, ≥99.5% (GC)
Sigma-Aldrich
Glicerolo, ≥99.5%
Sigma-Aldrich
Amikacin disulfate salt, potency: 674-786 μg per mg (as amikacin base)
Sigma-Aldrich
D-(+)-Glucosio, Hybri-Max, powder, BioReagent, suitable for hybridoma
Sigma-Aldrich
D-(+)-Glucosio, ACS reagent
Sigma-Aldrich
Glicerolo, BioXtra, ≥99% (GC)
Supelco
D-(+)-Glucosio, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
D-(+)-Glucosio, 99.9 atom % 16O, 99.9 atom % 12C
Sigma-Aldrich
Glicerolo, meets USP testing specifications
Supelco
Glicerolo, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Glicerolo, puriss., meets analytical specification of Ph. Eur., BP, 84-88%
USP
Amikacin sulfate, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Glicerolo, Vetec, reagent grade, 99%