Pular para o conteúdo
Merck
  • Proteome-wide lysine acetylation in cortical astrocytes and alterations that occur during infection with brain parasite Toxoplasma gondii.

Proteome-wide lysine acetylation in cortical astrocytes and alterations that occur during infection with brain parasite Toxoplasma gondii.

PloS one (2015-03-19)
Anne Bouchut, Aarti R Chawla, Victoria Jeffers, Andy Hudmon, William J Sullivan
RESUMO

Lysine acetylation is a reversible post-translational modification (PTM) that has been detected on thousands of proteins in nearly all cellular compartments. The role of this widespread PTM has yet to be fully elucidated, but can impact protein localization, interactions, activity, and stability. Here we present the first proteome-wide survey of lysine acetylation in cortical astrocytes, a subtype of glia that is a component of the blood-brain barrier and a key regulator of neuronal function and plasticity. We identified 529 lysine acetylation sites across 304 proteins found in multiple cellular compartments that largely function in RNA processing/transcription, metabolism, chromatin biology, and translation. Two hundred and seventy-seven of the acetylated lysines we identified on 186 proteins have not been reported previously in any other cell type. We also mapped an acetylome of astrocytes infected with the brain parasite, Toxoplasma gondii. It has been shown that infection with T. gondii modulates host cell gene expression, including several lysine acetyltransferase (KAT) and deacetylase (KDAC) genes, suggesting that the host acetylome may also be altered during infection. In the T. gondii-infected astrocytes, we identified 34 proteins exhibiting a level of acetylation >2-fold and 24 with a level of acetylation <2-fold relative to uninfected astrocytes. Our study documents the first acetylome map for cortical astrocytes, uncovers novel lysine acetylation sites, and demonstrates that T. gondii infection produces an altered acetylome.

MATERIAIS
Número do produto
Marca
Descrição do produto

Sigma-Aldrich
Ácido trifluoracético, suitable for HPLC, ≥99.0%
Sigma-Aldrich
Ácido trifluoracético, ReagentPlus®, 99%
Sigma-Aldrich
Ácido clorídrico, ACS reagent, 37%
Sigma-Aldrich
Ácido clorídrico, ACS reagent, 37%
Sigma-Aldrich
Cloreto de hidrogênio, 4.0 M in dioxane
Sigma-Aldrich
Ácido trifluoracético, puriss. p.a., suitable for HPLC, ≥99.0% (GC)
Sigma-Aldrich
Ácido clorídrico, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Ácido clorídrico, meets analytical specification of Ph. Eur., BP, NF, fuming, 36.5-38%
Sigma-Aldrich
Ácido clorídrico, 37 wt. % in H2O, 99.999% trace metals basis
Sigma-Aldrich
Ácido clorídrico, 36.5-38.0%, BioReagent, for molecular biology
Sigma-Aldrich
Ácido clorídrico, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., fuming, ≥37%, APHA: ≤10
Sigma-Aldrich
Cloreto de hidrogênio, 2.0 M in diethyl ether
Sigma-Aldrich
Ácido trifluoracético, ≥99%, for protein sequencing
Supelco
Ácido clorídrico, volumetric, 0.1 M HCl (0.1N), endotoxin free
Sigma-Aldrich
Anti-α-tubulina monoclonal, clone DM1A, purified from hybridoma cell culture
Sigma-Aldrich
Cloreto de hidrogênio, 1.0 M in diethyl ether
Sigma-Aldrich
Ácido clorídrico, puriss., 24.5-26.0%
Sigma-Aldrich
Ácido clorídrico, ~6 M in H2O, for amino acid analysis
Sigma-Aldrich
Cloreto de hidrogênio, 3 M in cyclopentyl methyl ether (CPME)
Sigma-Aldrich
Ácido clorídrico, 32 wt. % in H2O, FCC
Sigma-Aldrich
Cloreto de hidrogênio, 1.0 M in acetic acid
Supelco
Hydrogen chloride – methanol solution, ~1.25 m HCl (T), for GC derivatization, LiChropur
Supelco
Ácido trifluoracético, analytical standard
Supelco
Hydrogen chloride – 2-propanol solution, ~1.25 M HCl (T), for GC derivatization, LiChropur
Supelco
Hydrogen chloride – ethanol solution, ~1.25 M HCl, for GC derivatization, LiChropur