Skip to Content
MilliporeSigma
  • Hepatic stellate cells contribute to progenitor cells and liver regeneration.

Hepatic stellate cells contribute to progenitor cells and liver regeneration.

The Journal of clinical investigation (2014-11-18)
Claus Kordes, Iris Sawitza, Silke Götze, Diran Herebian, Dieter Häussinger
ABSTRACT

Retinoid-storing hepatic stellate cells (HSCs) have recently been described as a liver-resident mesenchymal stem cell (MSC) population; however, it is not clear whether these cells contribute to liver regeneration or serve as a progenitor cell population with hepatobiliary characteristics. Here, we purified HSCs with retinoid-dependent fluorescence-activated cell sorting from eGFP-expressing rats and transplanted these GFP(+) HSCs into wild-type (WT) rats that had undergone partial hepatectomy in the presence of 2-acetylaminofluorene (2AAF) or retrorsine, both of which are injury models that favor stem cell-based liver repair. Transplanted HSCs contributed to liver regeneration in host animals by forming mesenchymal tissue, progenitor cells, hepatocytes, and cholangiocytes and elevated direct bilirubin levels in blood sera of GUNN rats, indicating recovery from the hepatic bilirubin-handling defect in these animals. Transplanted HSCs engrafted within the bone marrow (BM) of host animals, and HSC-derived cells were isolated from BM and successfully retransplanted into new hosts with injured liver. Cultured HSCs transiently adopted an expression profile similar to that of progenitor cells during differentiation into bile acid-synthesizing and -transporting hepatocytes, suggesting that stellate cells represent a source of liver progenitor cells. This concept connects seemingly contradictory studies that favor either progenitor cells or MSCs as important players in stem cell-based liver regeneration.

MATERIALS
Product Number
Brand
Product Description

Supelco
Formaldehyde solution, stabilized with methanol, ~37 wt. % in H2O, certified reference material
Sigma-Aldrich
Sodium selenite, BioReagent, suitable for cell culture, ≥98%
Sigma-Aldrich
Sodium selenite, γ-irradiated, lyophilized powder, BioXtra, suitable for cell culture
Sigma-Aldrich
Formaldehyde solution, for molecular biology, 36.5-38% in H2O
Supelco
Methanol, analytical standard
Sigma-Aldrich
Formaldehyde solution, tested according to Ph. Eur.
Sigma-Aldrich
Sodium selenite, anhydrous, ≥90.0% (RT)
Sigma-Aldrich
Formaldehyde solution, meets analytical specification of USP, ≥34.5 wt. %
Sigma-Aldrich
Formaldehyde solution, for molecular biology, BioReagent, ≥36.0% in H2O (T)
Sigma-Aldrich
Formaldehyde-12C solution, 20% in H2O, 99.9 atom % 12C
Sigma-Aldrich
Methanol, SAJ first grade, ≥99.5%
Sigma-Aldrich
Methanol, SAJ special grade
Sigma-Aldrich
Methanol, JIS 300, ≥99.8%, for residue analysis
Sigma-Aldrich
Methanol, JIS special grade, ≥99.8%
Sigma-Aldrich
Formaldehyde solution, 10%
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Formaldehyde solution, ACS reagent, 37 wt. % in H2O, contains 10-15% Methanol as stabilizer (to prevent polymerization)
Sigma-Aldrich
Sodium selenite, SAJ first grade, ≥90.0%
Supelco
Methanol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Sodium selenite, 99%
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%, poly-coated bottles
Sigma-Aldrich
Formaldehyde solution, SAJ first grade, ≥35.0%, contains methanol as stabilizer
Sigma-Aldrich
Formaldehyde solution, JIS special grade, 36.0-38.0%, contains methanol as stabilizer
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, 99.93%
Sigma-Aldrich
Methanol, NMR reference standard
Sigma-Aldrich
Methanol, suitable for HPLC
Sigma-Aldrich
Anti-Glial Fibrillary Acidic Protein Antibody, clone GA5, clone GA5, Chemicon®, from mouse
SAFC
Formaldehyde solution, contains 10-15% methanol as stabilizer, 37 wt. % in H2O
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, Absolute - Acetone free