Passa al contenuto
Merck

Impact of hydration state and molecular oxygen on the chemical stability of levothyroxine sodium.

Pharmaceutical development and technology (2013-12-04)
Mazen Lee Hamad, William Engen, Kenneth R Morris
ABSTRACT

Levothyroxine sodium is an important medication used primarily for treating patients with hypothyroidism. Levothyroxine sodium tablets have been recalled many times since their 1955 introduction to the US market. These recalls resulted from the failure of lots to meet their content uniformity and potency specifications. The purpose of this study is to test the hypothesis that the chemical stability of levothyroxine sodium pentahydrate is compromised upon exposing the dehydrated substance to molecular oxygen. The impact of temperature, oxygen and humidity storage conditions on the stability of solid-state levothyroxine sodium was examined. After exposure to these storage conditions for selected periods of time, high performance liquid chromatography (HPLC) was used to quantify the formation of impurities. The results showed that levothyroxine sodium samples degraded significantly over a 32-day test period when subjected to dry conditions in the presence of molecular oxygen. However, dehydrated samples remained stable when oxygen was removed from the storage chamber. Furthermore, hydrated samples were stable in the presence of oxygen and in the absence of oxygen. These results reveal conditions that will degrade levothyroxine sodium pentahydrate and elucidate measures that can be taken to stabilize the drug substance.

MATERIALI
N° Catalogo
Marchio
Descrizione del prodotto

Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Metanolo, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Acido trifluoroacetico, ReagentPlus®, 99%
Sigma-Aldrich
Acido trifluoroacetico, suitable for HPLC, ≥99.0%
Sigma-Aldrich
Metanolo, ACS reagent, ≥99.8%
Sigma-Aldrich
Acetonitrile, HPLC Plus, ≥99.9%
Sigma-Aldrich
Sodio idrossido, ACS reagent, ≥97.0%, pellets
Sigma-Aldrich
Metanolo, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Sodio idrossido, reagent grade, ≥98%, pellets (anhydrous)
Sigma-Aldrich
Idrossido di sodio, 50% in H2O
Sigma-Aldrich
Metanolo, HPLC Plus, ≥99.9%
Sigma-Aldrich
Acido trifluoroacetico, puriss. p.a., suitable for HPLC, ≥99.0% (GC)
Sigma-Aldrich
Acetonitrile, ACS reagent, ≥99.5%
Sigma-Aldrich
Idrossido di sodio, BioUltra, for molecular biology, 10 M in H2O
Sigma-Aldrich
Acetonitrile, for HPLC, for UV, ≥99.9% (GC)
Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Metanolo, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Sodio idrossido, BioXtra, ≥98% (acidimetric), pellets (anhydrous)
Sigma-Aldrich
Sodio idrossido, puriss., meets analytical specification of Ph. Eur., BP, NF, E524, 98-100.5%, pellets
Sigma-Aldrich
Idrossido di sodio, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Metanolo, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
Sodio idrossido, reagent grade, 97%, powder
Sigma-Aldrich
Metanolo, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Sodio idrossido, pellets, semiconductor grade, 99.99% trace metals basis
Sigma-Aldrich
Sodio idrossido, puriss. p.a., ACS reagent, reag. Ph. Eur., K ≤0.02%, ≥98%, pellets
Sigma-Aldrich
Acido trifluoroacetico, ≥99%, for protein sequencing
Sigma-Aldrich
L-tirosina, from non-animal source, meets EP, USP testing specifications, suitable for cell culture, 99.0-101.0%
Sigma-Aldrich
Metanolo, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Idrossido di sodio, 5.0 M
Sigma-Aldrich
Acetonitrile, suitable for HPLC-GC, ≥99.8% (GC)