Pular para o conteúdo
Merck
  • Novel protease inhibitor-loaded Nanoparticle-in-Microparticle Delivery System leads to a dramatic improvement of the oral pharmacokinetics in dogs.

Novel protease inhibitor-loaded Nanoparticle-in-Microparticle Delivery System leads to a dramatic improvement of the oral pharmacokinetics in dogs.

Biomaterials (2014-12-03)
Julieta C Imperiale, Pablo Nejamkin, Maria J Del Sole, Carlos E Lanusse, Alejandro Sosnik
RESUMO

With the advent of the Highly Active Antiretroviral Therapy, the morbidity and the mortality associated to HIV have been considerably reduced. However, 35-40 million people bear the infection worldwide. One of the main causes of therapeutic failure is the frequent administration of several antiretrovirals that results in low patient compliance and treatment cessation. In this work, we have developed an innovative Nanoparticle-in-Microparticle Delivery System (NiMDS) comprised of pure drug nanocrystals of the potent protease inhibitor indinavir free base (used as poorly water-soluble model protease inhibitor) produced by nanoprecipitation that were encapsulated within mucoadhesive polymeric microparticles. Pure drug nanoparticles and microparticles were thoroughly characterized by diverse complementary techniques. NiMDSs displayed an encapsulation efficiency of approximately 100% and a drug loading capacity of up to 43% w/w. In addition, mucoadhesiveness assays ex vivo conducted with bovine gut showed that film-coated microparticles were retained for more than 6 h. Finally, pharmacokinetics studies in mongrel dogs showed a dramatic 47- and 95-fold increase of the drug oral bioavailability and half-life, respectively, with respect to the free unprocessed drug. These results support the outstanding performance of this platform to reduce the dose and the frequency of administration of protease inhibitors, a crucial step to overcome the current patient-incompliant therapy.

MATERIAIS
Número do produto
Marca
Descrição do produto

Sigma-Aldrich
Acetonitrilo, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Acetona, ACS reagent, ≥99.5%
Sigma-Aldrich
Acetonitrilo, HPLC Plus, ≥99.9%
Sigma-Aldrich
Acetona, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Acetona, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%
Sigma-Aldrich
Cloreto de cálcio, ACS reagent, ≥99%
Sigma-Aldrich
Acetona, Laboratory Reagent, ≥99.5%
Sigma-Aldrich
Acetonitrilo, ACS reagent, ≥99.5%
Sigma-Aldrich
Acetonitrilo, ≥99.9% (GC)
Sigma-Aldrich
Acetonitrilo, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Cloreto de cálcio, ReagentPlus®, ≥99.0%
Sigma-Aldrich
Acetona, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.5% (GC)
Sigma-Aldrich
Cloreto de cálcio, for molecular biology, ≥99.0%
Sigma-Aldrich
Cloreto de cálcio, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99.0%
Sigma-Aldrich
Acetona, suitable for HPLC, ≥99.8%
Sigma-Aldrich
Acetonitrilo, suitable for HPLC-GC, ≥99.8% (GC)
Sigma-Aldrich
Acetona, ACS reagent, ≥99.5%
USP
Acetona, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
N,N′-Disuccinimidyl carbonate, ≥95%
Sigma-Aldrich
Acetonitrilo, biotech. grade, ≥99.93%
Sigma-Aldrich
Acetona, histological grade, ≥99.5%
Sigma-Aldrich
Cloreto de cálcio, BioUltra, for molecular biology, ≥99.5% (KT)
Sigma-Aldrich
Cloreto de cálcio, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥99%
Sigma-Aldrich
Acetonitrilo, anhydrous, 99.8%
Sigma-Aldrich
Cloreto de cálcio, puriss., meets analytical specification of Ph. Eur., USP, FCC, E509, 99-103%, ≤0.0001% Al
Sigma-Aldrich
Acetona, puriss., meets analytical specification of Ph. Eur., BP, NF, ≥99% (GC)
Sigma-Aldrich
Acetona, natural, ≥97%
Sigma-Aldrich
Acetona, ≥99%, meets FCC analytical specifications
Sigma-Aldrich
Acetonitrilo, ReagentPlus®, 99%
Sigma-Aldrich
Acetonitrilo, electronic grade, 99.999% trace metals basis