Skip to Content
MilliporeSigma
  • Sorafenib-induced defective autophagy promotes cell death by necroptosis.

Sorafenib-induced defective autophagy promotes cell death by necroptosis.

Oncotarget (2015-09-30)
Pedram Kharaziha, Dimitris Chioureas, George Baltatzis, Pedro Fonseca, Patricia Rodriguez, Vladimir Gogvadze, Lena Lennartsson, Ann-Charlotte Björklund, Boris Zhivotovsky, Dan Grandér, Lars Egevad, Sten Nilsson, Theocharis Panaretakis
ABSTRACT

Autophagy is one of the main cytoprotective mechanisms that cancer cells deploy to withstand the cytotoxic stress and survive the lethal damage induced by anti-cancer drugs. However, under specific conditions, autophagy may, directly or indirectly, induce cell death. In our study, treatment of the Atg5-deficient DU145 prostate cancer cells, with the multi-tyrosine kinase inhibitor, sorafenib, induces mitochondrial damage, autophagy and cell death. Molecular inhibition of autophagy by silencing ULK1 and Beclin1 rescues DU145 cells from cell death indicating that, in this setting, autophagy promotes cell death. Re-expression of Atg5 restores the lipidation of LC3 and rescues DU145 and MEF atg5-/- cells from sorafenib-induced cell death. Despite the lack of Atg5 expression and LC3 lipidation, DU145 cells form autophagosomes as demonstrated by transmission and immuno-electron microscopy, and the formation of LC3 positive foci. However, the lack of cellular content in the autophagosomes, the accumulation of long-lived proteins, the presence of GFP-RFP-LC3 positive foci and the accumulated p62 protein levels indicate that these autophagosomes may not be fully functional. DU145 cells treated with sorafenib undergo a caspase-independent cell death that is inhibited by the RIPK1 inhibitor, necrostatin-1. Furthermore, treatment with sorafenib induces the interaction of RIPK1 with p62, as demonstrated by immunoprecipitation and a proximity ligation assay. Silencing of p62 decreases the RIPK1 protein levels and renders necrostatin-1 ineffective in blocking sorafenib-induced cell death. In summary, the formation of Atg5-deficient autophagosomes in response to sorafenib promotes the interaction of p62 with RIPK leading to cell death by necroptosis.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Tetramethylrhodamine ethyl ester perchlorate, suitable for fluorescence, ≥90% (HPCE)
Sigma-Aldrich
L-Methionine, BioUltra, ≥99.5% (NT)
Sigma-Aldrich
Oligomycin A, ≥99% (HPLC)
Sigma-Aldrich
Digitonin, Used as non-ionic detergent
Sigma-Aldrich
Digitonin, ~50% (TLC)
Sigma-Aldrich
L-Methionine, from non-animal source, meets EP, JP, USP testing specifications, suitable for cell culture, 99.0-101.0%
SAFC
L-Methionine
Sigma-Aldrich
L-Methionine, reagent grade, ≥98% (HPLC)
Sigma-Aldrich
Methanol-12C, 99.95 atom % 12C
Sigma-Aldrich
L-Methionine, SAJ special grade, ≥98.5%
Supelco
Methanol solution, contains 0.10 % (v/v) formic acid, UHPLC, suitable for mass spectrometry (MS), ≥99.5%
Sigma-Aldrich
Methanol solution, NMR reference standard, 4% in methanol-d4 (99.8 atom % D), NMR tube size 3 mm × 8 in.
Sigma-Aldrich
MISSION® esiRNA, targeting mouse Ripk1
Sigma-Aldrich
Methanol, SAJ special grade
Sigma-Aldrich
Methanol, SAJ first grade, ≥99.5%
Sigma-Aldrich
Methanol, JIS 300, ≥99.8%, for residue analysis
Sigma-Aldrich
Methanol, JIS special grade, ≥99.8%
Sigma-Aldrich
Hydrogen peroxide solution, SAJ first grade, ≥30.0%
Sigma-Aldrich
MISSION® esiRNA, targeting human RIPK1
Sigma-Aldrich
Rapamycin, Ready Made Solution, 2.5 mg/mL in DMSO (2.74 mM), from Streptomyces hygroscopicus
Sigma-Aldrich
Methanol, suitable for HPLC
Sigma-Aldrich
Methanol, NMR reference standard
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%, poly-coated bottles
Supelco
DL-Dithiothreitol solution, 1 M in H2O
Sigma-Aldrich
Hydrogen peroxide solution, 30 % (w/w) in H2O, contains stabilizer
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
5(6)-Carboxyfluorescein N-hydroxysuccinimide ester, BioReagent, suitable for fluorescence, mixture of isomers, ≥80% (HPLC)
Sigma-Aldrich
DL-Dithiothreitol solution, BioUltra, for molecular biology, ~1 M in H2O
Sigma-Aldrich
Hydrogen peroxide solution, 34.5-36.5%
Sigma-Aldrich
Monoclonal Anti-β-Actin antibody produced in mouse, clone AC-15, ascites fluid