Skip to Content
MilliporeSigma
  • Bortezomib enhances the osteogenic differentiation capacity of human mesenchymal stromal cells derived from bone marrow and placental tissues.

Bortezomib enhances the osteogenic differentiation capacity of human mesenchymal stromal cells derived from bone marrow and placental tissues.

Biochemical and biophysical research communications (2014-04-22)
Tanwarat Sanvoranart, Aungkura Supokawej, Pakpoom Kheolamai, Yaowalak U-Pratya, Nuttha Klincumhom, Sirikul Manochantr, Methichit Wattanapanitch, Surapol Issaragrisil
ABSTRACT

Bortezomib (BZB) is a chemotherapeutic agent approved for treating multiple myeloma (MM) patients. In addition, there are several reports showing that bortezomib can induce murine mesenchymal stem cells (MSCs) to undergo osteogenic differentiation and increase bone formation in vivo. MSCs are the multipotent stem cells that have capacity to differentiate into several mesodermal derivatives including osteoblasts. Nowadays, MSCs mostly bone marrow derived have been considered as a valuable source of cell for tissue replacement therapy. In this study, the effect of bortezomib on the osteogenic differentiation of human MSCs derived from both bone marrow (BM-MSCs) and postnatal sources such as placenta (PL-MSCs) were investigated. The degree of osteogenic differentiation of BM-MSCs and PL-MSCs after bortezomib treatment was assessed by alkaline phosphatase (ALP) activity, matrix mineralization by Alizarin Red S staining and the expression profiles of osteogenic differentiation marker genes, Osterix, RUNX2 and BSP. The results showed that 1 nM and 2 nM BZB can induce osteogenic differentiation of BM-MSCs and PL-MSCs as demonstrated by increased ALP activity, increased matrix mineralization and up-regulation of osteogenic differentiation marker genes, Osterix, RUNX2 and BSP as compared to controls. The enhancement of osteogenic differentiation of MSCs by bortezomib may lead to the potential therapeutic applications in human diseases especially patients with osteopenia.

MATERIALS
Product Number
Brand
Product Description

Ascorbic acid, European Pharmacopoeia (EP) Reference Standard
Dexamethasone, European Pharmacopoeia (EP) Reference Standard
USP
Ascorbic acid, United States Pharmacopeia (USP) Reference Standard
Supelco
Dexamethasone, Pharmaceutical Secondary Standard; Certified Reference Material
Dexamethasone, British Pharmacopoeia (BP) Assay Standard
Dexamethasone for system suitability, European Pharmacopoeia (EP) Reference Standard
USP
Dexamethasone, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Dexamethasone, tested according to Ph. Eur.
Supelco
Dexamethasone, VETRANAL®, analytical standard
Supelco
Ascorbic Acid, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Dexamethasone, powder, γ-irradiated, BioXtra, suitable for cell culture, ≥80% (HPLC)
Sigma-Aldrich
Dexamethasone, meets USP testing specifications
Sigma-Aldrich
Dexamethasone, ≥98% (HPLC), powder
Sigma-Aldrich
Dexamethasone, powder, BioReagent, suitable for cell culture, ≥97%
Sigma-Aldrich
L-Ascorbic acid, suitable for cell culture, suitable for plant cell culture, ≥98%
Sigma-Aldrich
L-Ascorbic acid, BioXtra, ≥99.0%, crystalline
Sigma-Aldrich
L-Ascorbic acid, reagent grade, crystalline
Sigma-Aldrich
L-Ascorbic acid, reagent grade
Sigma-Aldrich
Fluorescein 5(6)-isothiocyanate, ≥90% (HPLC)
Sigma-Aldrich
Fluorescein 5(6)-isothiocyanate, BioReagent, suitable for fluorescence, mixture of 2 components, ≥90% (HPLC)
Sigma-Aldrich
L-Ascorbic acid, tested according to Ph. Eur.
Sigma-Aldrich
L-Ascorbic acid, BioUltra, ≥99.5% (RT)
Sigma-Aldrich
L-Ascorbic acid, powder, suitable for cell culture, γ-irradiated
Sigma-Aldrich
L-Ascorbic acid, meets USP testing specifications