Skip to Content
MilliporeSigma
  • Motility of efferent duct cilia aids passage of sperm cells through the male reproductive system.

Motility of efferent duct cilia aids passage of sperm cells through the male reproductive system.

Molecular human reproduction (2021-02-10)
Isabella Aprea, Tabea Nöthe-Menchen, Gerard W Dougherty, Johanna Raidt, Niki T Loges, Thomas Kaiser, Julia Wallmeier, Heike Olbrich, Timo Strünker, Sabine Kliesch, Petra Pennekamp, Heymut Omran
ABSTRACT

Motile cilia line the efferent ducts of the mammalian male reproductive tract. Several recent mouse studies have demonstrated that a reduced generation of multiple motile cilia in efferent ducts is associated with obstructive oligozoospermia and fertility issues. However, the sole impact of efferent duct cilia dysmotility on male infertility has not been studied so far either in mice or human. Using video microscopy, histological- and ultrastructural analyses, we examined male reproductive tracts of mice deficient for the axonemal motor protein DNAH5: this defect exclusively disrupts the outer dynein arm (ODA) composition of motile cilia but not the ODA composition and motility of sperm flagella. These mice have immotile efferent duct cilia that lack ODAs, which are essential for ciliary beat generation. Furthermore, they show accumulation of sperm in the efferent duct. Notably, the ultrastructure and motility of sperm from these males are unaffected. Likewise, human individuals with loss-of-function DNAH5 mutations present with reduced sperm count in the ejaculate (oligozoospermia) and dilatations of the epididymal head but normal sperm motility, similar to DNAH5 deficient mice. The findings of this translational study demonstrate, in both mice and men, that efferent duct ciliary motility is important for male reproductive fitness and uncovers a novel pathomechanism distinct from primary defects of sperm motility (asthenozoospermia). If future work can identify environmental factors or defects in genes other than DNAH5 that cause efferent duct cilia dysmotility, this will help unravel other causes of oligozoospermia and may influence future practices in genetic and fertility counseling as well as ART.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-DNAH8 antibody produced in rabbit, Prestige Antibodies® Powered by Atlas Antibodies, affinity isolated antibody, buffered aqueous glycerol solution, ab1
Pricing and availability is not currently available.