All Photos(2)



Fluoroethylene carbonate

greener alternative


4-Fluoro-1,3-dioxolan-2-one, FEC
Empirical Formula (Hill Notation):
CAS Number:
Molecular Weight:
EC Number:
MDL number:
PubChem Substance ID:

Quality Level



greener alternative product characteristics

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.


18-23 °C


battery manufacturing

greener alternative category


storage temp.


SMILES string




InChI key


Looking for similar products? Visit Product Comparison Guide

General description

We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product has been enhanced for energy efficiency. Find details here.


Fluoroethylene carbonate (FEC) can be used as a co-solvent for the formation of electrolytes, which can exhibit a reversible capacity of 2.5 Ah g−1. It can be further used in the fabrication of lithium-ion batteries. FEC enables the formation of thin, smooth and stable passive solid electrolyte interphase (SEI) layer, which is insoluble in the electrolyte, in turn increasing the cycling efficiency and discharge capacity retention of the secondary battery.


25 g in glass bottle


Exclamation mark

Signal Word


Hazard Statements

Hazard Classifications

Acute Tox. 4 Oral - Eye Irrit. 2 - Skin Irrit. 2 - Skin Sens. 1

Storage Class Code

11 - Combustible Solids



Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Certificate of Analysis

Certificate of Origin

More documents

Quotes and Ordering

Biao Zhang et al.
Advanced materials (Deerfield Beach, Fla.), 28(44), 9824-9830 (2016-09-21)
Microsized Sn presents stable cyclic performance in a glyme-based electrolyte, which brings 19% increase in energy density of Sn/Na
Nichola Eliza Davies Calvani et al.
PLoS neglected tropical diseases, 11(9), e0005931-e0005931 (2017-09-16)
Fasciolosis, due to Fasciola hepatica and Fasciola gigantica, is a re-emerging zoonotic parasitic disease of worldwide importance. Human and animal infections are commonly diagnosed by the traditional sedimentation and faecal egg-counting technique. However, this technique is time-consuming and prone to
Yoshinori Utsumi et al.
PloS one, 12(8), e0180736-e0180736 (2017-08-15)
Agrobacterium-mediated transformation is an important research tool for the genetic improvement of cassava. The induction of friable embryogenic callus (FEC) is considered as a key step in cassava transformation. In the present study, the media composition was optimized for enhancing
Ben Breitung et al.
Scientific reports, 7(1), 13010-13010 (2017-10-14)
Si holds great promise as an alloying anode material for Li-ion batteries with improved energy density because of its high theoretical specific capacity and favorable operation voltage range. However, the large volume expansion of Si during electrochemical reaction with Li
Chuanfang John Zhang et al.
Nature communications, 10(1), 849-849 (2019-02-23)
The ever-increasing demands for advanced lithium-ion batteries have greatly stimulated the quest for robust electrodes with a high areal capacity. Producing thick electrodes from a high-performance active material would maximize this parameter. However, above a critical thickness, solution-processed films typically


High-Energy Lithium-Ion Batteries via a Couette–Taylor-Flow-Reactor

Dr. Schmuch, Dr. Siozios, Professor Dr. Winter, and Dr. Placke review the challenges and opportunities of nickelrich layered oxide cathode materials. They discuss production processes for the layered oxide cathode materials as well as their chemistry and morphology.

Electrode Materials for Lithium Ion Batteries

Electrode Materials for Lithium Ion Batteries

Safer High-performance Electrodes, Solid Electrolytes, and Interface Reactions for Lithium-Ion Batteries

Li-ion batteries are currently the focus of numerous research efforts with applications designed to reduce carbon-based emissions and improve energy storage capabilities.

Scaling Up High-Energy Cathode Materials for Electric Vehicles

The critical technical challenges associated with the commercialization of electric vehicle batteries include cost, performance, abuse tolerance, and lifespan.

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service