Skip to Content
MilliporeSigma
All Photos(3)

Key Documents

203424

Sigma-Aldrich

Indium(III) oxide

99.998% trace metals basis

Synonym(s):

Diindium trioxide, Indium sesquioxide

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
In2O3
CAS Number:
Molecular Weight:
277.63
EC Number:
MDL number:
UNSPSC Code:
12352303
PubChem Substance ID:
NACRES:
NA.23

vapor pressure

<0.01 mmHg ( 25 °C)

assay

99.998% trace metals basis

form

powder

reaction suitability

reagent type: catalyst
core: indium

density

7.18 g/mL at 25 °C (lit.)

application(s)

battery manufacturing

SMILES string

O=[In]O[In]=O

InChI

1S/2In.3O

InChI key

SHTGRZNPWBITMM-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Application

  • Synthesis and Characterization: The development of gold nanoclusters on the surface of tin and indium oxide films, synthesizing new materials for advanced applications (Korotcenkov et al., 2014).
  • Photocatalysis: Using nitrogen/sulfur-codoped carbon-coated indium oxide nanoparticles as excellent photocatalysts, providing insights into environmental and energy applications (Sun et al., 2019).

Storage Class

11 - Combustible Solids

wgk_germany

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable

ppe

dust mask type N95 (US), Eyeshields, Gloves


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Huimeng Wu et al.
Journal of the American Chemical Society, 133(36), 14327-14337 (2011-08-11)
This Article reports a mechanistic study on the formation of colloidal UO(2)/In(2)O(3) and FePt/In(2)O(3) heterodimer nanocrystals. These dimer nanocrystals were synthesized via the growth of In(2)O(3) as the epitaxial material onto the seed nanocrystals of UO(2) or FePt. The resulting
Xiaoyun Li et al.
Environmental science & technology, 46(10), 5528-5534 (2012-04-12)
Perfluorooctanoic acid (C(7)F(15)COOH, PFOA) has increasingly attracted worldwide concerns due to its global occurrence and resistance to most conventional treatment processes. Though TiO(2)-based photocatalysis is strong enough to decompose most organics, it is not effective for PFOA decomposition. We first
Xuming Zou et al.
ACS nano, 7(1), 804-810 (2012-12-12)
In recent years, In(2)O(3) nanowires (NWs) have been widely explored in many technological areas due to their excellent electrical and optical properties; however, most of these devices are based on In(2)O(3) NW field-effect transistors (FETs) operating in the depletion mode
Ariel Amir et al.
Proceedings of the National Academy of Sciences of the United States of America, 109(6), 1850-1855 (2012-02-09)
Slow relaxation occurs in many physical and biological systems. "Creep" is an example from everyday life. When stretching a rubber band, for example, the recovery to its equilibrium length is not, as one might think, exponential: The relaxation is slow
Di Chen et al.
Nanoscale, 4(10), 3001-3012 (2012-04-13)
With the features of high mobility, a high electric on/off ratio and excellent transparency, metal oxide nanowires are excellent candidates for transparent thin-film transistors, which is one of the key technologies to realize transparent electronics. This article provides a comprehensive

Articles

Self-Assembled Nanodielectrics (SANDs) for Unconventional Electronics

Spectral conversion for solar cells is an emerging concept in the field of photovoltaics, and it has the potential to increase significantly the efficiency of solar cells. Lanthanide ions are ideal candidates for spectral conversion, due to their high luminescence efficiencies and rich energy level structure that allows for great flexibility in the upconversion and downconversion of photons in a wide spectral region (NIR-VIS-UV).

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service