Skip to Content
MilliporeSigma
  • Controlled Endolysosomal Release of Agents by pH-responsive Polymer Blend Particles.

Controlled Endolysosomal Release of Agents by pH-responsive Polymer Blend Particles.

Pharmaceutical research (2015-01-17)
Xi Zhan, Kenny K Tran, Liguo Wang, Hong Shen
ABSTRACT

A key step of delivering extracellular agents to its intracellular target is to escape from endosomal/lysosomal compartments, while minimizing the release of digestive enzymes that may compromise cellular functions. In this study, we examined the intracellular distribution of both fluorecent cargoes and enzymes by a particle delivery platform made from the controlled blending of poly(lactic-co-glycolic acid) (PLGA) and a random pH-sensitive copolymer. We utilized both microscopic and biochemical methods to semi-quantitatively assess how the composition of blend particles affects the level of endosomal escape of cargos of various sizes and enzymes into the cytosolic space. We demonstrated that these polymeric particles enabled the controlled delivery of cargos into the cytosolic space that was more dependent on the cargo size and less on the composition of blend particles. Blend particles did not induce the rupture of endosomal/lysosomal compartments and released less than 20% of endosomal/lysosomal enzymes. This study provides insight into understanding the efficacy and safety of a delivery system for intracellular delivery of biologics and drugs. Blend particles offer a potential platform to target intracellular compartments while potentially minimizing cellular toxicity.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Formaldehyde solution, for molecular biology, BioReagent, ≥36.0% in H2O (T)
Sigma-Aldrich
Formaldehyde solution, meets analytical specification of USP, ≥34.5 wt. %
Sigma-Aldrich
Formaldehyde solution, ACS reagent, 37 wt. % in H2O, contains 10-15% Methanol as stabilizer (to prevent polymerization)
Sigma-Aldrich
2-Phenylindole, technical grade, 95%
Sigma-Aldrich
2,2′-Azobis(2-methylpropionitrile), 98%
Sigma-Aldrich
Formaldehyde solution, for molecular biology, 36.5-38% in H2O
Sigma-Aldrich
Acridine Orange hydrochloride solution, 10 mg/mL in H2O, ≥95.0% (HPLC)
Sigma-Aldrich
Tetrahydrofuran, anhydrous, contains 250 ppm BHT as inhibitor, ≥99.9%
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Formaldehyde-12C solution, 20% in H2O, 99.9 atom % 12C
Sigma-Aldrich
Diethyl ether, contains 1 ppm BHT as inhibitor, anhydrous, ≥99.7%
Sigma-Aldrich
Tetrahydrofuran, suitable for HPLC, ≥99.9%, inhibitor-free
Sigma-Aldrich
Tetrahydrofuran, anhydrous, ≥99.9%, inhibitor-free
Sigma-Aldrich
Sulfuric acid, 99.999%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, 99.93%
Sigma-Aldrich
Sulfuric acid, JIS special grade, ≥95.0%
Sigma-Aldrich
Diethyl ether, JIS 1000, ≥99.5%, for residue analysis
Sigma-Aldrich
Formaldehyde solution, 10%
Sigma-Aldrich
2,2′-Azobis(2-methylpropionitrile), SAJ first grade, ≥98.0%
Sigma-Aldrich
Tetrahydrofuran, SAJ first grade, ≥99.0%
Sigma-Aldrich
Diethyl ether, SAJ first grade, ≥99.0%
Sigma-Aldrich
Diethyl ether, for residue analysis, JIS 5000
Sigma-Aldrich
Diethyl ether, ≥99.5%
Sigma-Aldrich
Diethyl ether, JIS special grade, ≥99.5%
Sigma-Aldrich
Methanol, SAJ special grade
Sigma-Aldrich
Methanol, suitable for HPLC
Sigma-Aldrich
Tetrahydrofuran, JIS special grade, ≥99.5%
Sigma-Aldrich
Tetrahydrofuran, suitable for HPLC, contains no stabilizer
Sigma-Aldrich
Methanol, NMR reference standard
Sigma-Aldrich
Methanol, SAJ first grade, ≥99.5%