コンテンツへスキップ
Merck
  • Aspen defense chemicals influence midgut bacterial community composition of gypsy moth.

Aspen defense chemicals influence midgut bacterial community composition of gypsy moth.

Journal of chemical ecology (2014-12-06)
Charles J Mason, Kennedy F Rubert-Nason, Richard L Lindroth, Kenneth F Raffa
要旨

Microbial symbionts are becoming increasingly recognized as mediators of many aspects of plant - herbivore interactions. However, the influence of plant chemical defenses on gut associates of insect herbivores is less well understood. We used gypsy moth (Lymantria dispar L.), and differing trembling aspen (Populus tremuloides Michx.) genotypes that vary in chemical defenses, to assess the influence of foliar chemistry on bacterial communities of larval midguts. We evaluated the bacterial community composition of foliage, and of midguts of larvae feeding on those leaves, using next-generation high-throughput sequencing. Plant defense chemicals did not influence the composition of foliar communities. In contrast, both phenolic glycosides and condensed tannins affected the bacterial consortia of gypsy moth midguts. The two most abundant operational taxonomic units were classified as Ralstonia and Acinetobacter. The relative abundance of Ralstonia was higher in midguts than in foliage when phenolic glycoside concentrations were low, but lower in midguts when phenolic glycosides were high. In contrast, the relative abundance of Ralstonia was lower in midguts than in foliage when condensed tannin concentrations were low, but higher in midguts when condensed tannins were high. Acinetobacter showed a different relationship with host chemistry, being relatively more abundant in midguts than with foliage when condensed tannin concentrations were low, but lower in midguts when condensed tannins were high. Acinetobacter tended to have a greater relative abundance in midguts of insects feeding on genotypes with high phenolic glycoside concentrations. These results show that plant defense chemicals influence herbivore midgut communities, which may in turn influence host utilization.

材料
製品番号
ブランド
製品内容

Sigma-Aldrich
アセトニトリル, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
ギ酸, reagent grade, ≥95%
Sigma-Aldrich
ギ酸, ACS reagent, ≥96%
Sigma-Aldrich
ギ酸, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥98%
Sigma-Aldrich
アセトニトリル, ACS reagent, ≥99.5%
Sigma-Aldrich
アセトニトリル, ≥99.9% (GC)
Sigma-Aldrich
アセトニトリル, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
ギ酸, puriss., meets analytical specifications of DAC, FCC, 98.0-100%
Sigma-Aldrich
ギ酸, ACS reagent, ≥88%
Sigma-Aldrich
アセトニトリル, suitable for HPLC-GC, ≥99.8% (GC)
Sigma-Aldrich
アセトニトリル, biotech. grade, ≥99.93%
Sigma-Aldrich
アセトニトリル, anhydrous, 99.8%
Sigma-Aldrich
ギ酸, ≥95%, FCC, FG
Sigma-Aldrich
D-(−)-サリシン, ≥99% (GC)
Sigma-Aldrich
アセトニトリル, ReagentPlus®, 99%
Sigma-Aldrich
アセトニトリル, electronic grade, 99.999% trace metals basis
Sigma-Aldrich
アセトニトリル, suitable for DNA synthesis, ≥99.9% (GC)
Sigma-Aldrich
ギ酸, JIS special grade, ≥98.0%
Sigma-Aldrich
アセトニトリル, ≥99.8%, suitable for HPLC
Supelco
アセトニトリル, Pharmaceutical Secondary Standard; Certified Reference Material
USP
アセトニトリル 溶液, United States Pharmacopeia (USP) Reference Standard
Supelco
アセトニトリル, suitable for HPLC, gradient grade, ≥99.9% (GC)
Sigma-Aldrich
アセトニトリル, ≥99.8%, for residue analysis, JIS 300
Sigma-Aldrich
ギ酸 溶液, BioUltra, 1.0 M in H2O
Sigma-Aldrich
アセトニトリル, JIS special grade, ≥99.5%
Sigma-Aldrich
Salicylic acid-d6, 98 atom % D, 99% (CP)
Sigma-Aldrich
ギ酸, SAJ first grade, 88.0-89.5%
Supelco
アセトニトリル, analytical standard
Supelco
アセトニトリル, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
アセトニトリル, ≥99.5%, ACS reagent