Passa al contenuto
Merck

Novel epigenetic target therapy for prostate cancer: a preclinical study.

PloS one (2014-05-24)
Ilaria Naldi, Monia Taranta, Lisa Gherardini, Gualtiero Pelosi, Federica Viglione, Settimio Grimaldi, Luca Pani, Caterina Cinti
ABSTRACT

Epigenetic events are critical contributors to the pathogenesis of cancer, and targeting epigenetic mechanisms represents a novel strategy in anticancer therapy. Classic demethylating agents, such as 5-Aza-2'-deoxycytidine (Decitabine), hold the potential for reprograming somatic cancer cells demonstrating high therapeutic efficacy in haematological malignancies. On the other hand, epigenetic treatment of solid tumours often gives rise to undesired cytotoxic side effects. Appropriate delivery systems able to enrich Decitabine at the site of action and improve its bioavailability would reduce the incidence of toxicity on healthy tissues. In this work we provide preclinical evidences of a safe, versatile and efficient targeted epigenetic therapy to treat hormone sensitive (LNCap) and hormone refractory (DU145) prostate cancers. A novel Decitabine formulation, based on the use of engineered erythrocyte (Erythro-Magneto-Hemagglutinin Virosomes, EMHVs) drug delivery system (DDS) carrying this drug, has been refined. Inside the EMHVs, the drug was shielded from the environment and phosphorylated in its active form. The novel magnetic EMHV DDS, endowed with fusogenic protein, improved the stability of the carried drug and exhibited a high efficiency in confining its delivery at the site of action in vivo by applying an external static magnetic field. Here we show that Decitabine loaded into EMHVs induces a significant tumour mass reduction in prostate cancer xenograft models at a concentration, which is seven hundred times lower than the therapeutic dose, suggesting an improved pharmacokinetics/pharmacodynamics of drug. These results are relevant for and discussed in light of developing personalised autologous therapies and innovative clinical approach for the treatment of solid tumours.

MATERIALI
N° Catalogo
Marchio
Descrizione del prodotto

Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Metanolo, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Metanolo, ACS reagent, ≥99.8%
Sigma-Aldrich
Fosfato di potassio, ACS reagent, ≥99.0%
Sigma-Aldrich
Acetonitrile, HPLC Plus, ≥99.9%
Sigma-Aldrich
Metanolo, HPLC Plus, ≥99.9%
Sigma-Aldrich
Ammonio acetato, ACS reagent, ≥97%
Sigma-Aldrich
Acetonitrile, ACS reagent, ≥99.5%
Sigma-Aldrich
Sodio cloruro, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Ammonio acetato, ≥99.99% trace metals basis
Sigma-Aldrich
Fosfato di potassio, powder, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99.0%
Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
L-glutammina, meets USP testing specifications, suitable for cell culture, 99.0-101.0%, from non-animal source
Sigma-Aldrich
Metanolo, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Sodio cloruro, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Sodio cloruro, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Sodio cloruro, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Metanolo, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
L-glutammina, ReagentPlus®, ≥99% (HPLC)
Sigma-Aldrich
Hexylamine, 99%
SAFC
Sodio cloruro, 5 M
Sigma-Aldrich
Ammonio acetato, for molecular biology, ≥98%
Sigma-Aldrich
Metanolo, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Ammonium acetate solution, for molecular biology, 7.5 M
Sigma-Aldrich
Metanolo, BioReagent, ≥99.93%
SAFC
L-glutammina
Sigma-Aldrich
Metanolo, ACS reagent, ≥99.8%
Sigma-Aldrich
Fosfato di potassio, for molecular biology, ≥98.0%
Sigma-Aldrich
Metanolo, Absolute - Acetone free
Sigma-Aldrich
Sodio cloruro, BioUltra, for molecular biology, ~5 M in H2O