C1868
Anti-Anti-Calcium Channel CaV3.2 (α1H)
affinity isolated antibody, lyophilized powder
Sinonimo/i:
Anti-CACNA1HB, Anti-Cav3.2, Anti-ECA6, Anti-EIG6, Anti-HALD4
Autenticatiper visualizzare i prezzi riservati alla tua organizzazione & contrattuali
About This Item
Prodotti consigliati
Origine biologica
rabbit
Livello qualitativo
Coniugato
unconjugated
Forma dell’anticorpo
affinity isolated antibody
Tipo di anticorpo
primary antibodies
Clone
polyclonal
Stato
lyophilized powder
Reattività contro le specie
rat
tecniche
western blot: 1:200 using lysate from the ND7/23 cell line
N° accesso UniProt
Condizioni di spedizione
dry ice
Temperatura di conservazione
−20°C
modifica post-traduzionali bersaglio
unmodified
Informazioni sul gene
rat ... Cacna1h(114862)
Descrizione generale
Calcium channel, voltage-dependent, T type, α1H subunit (CACNA1H) is a protein encoded by the CACNA1H gene in humans and is mapped to chromosome 16p13.3. The proteins are membrane protein machinery performing selective permeation of external calcium ions. The α1H channel is sensitive to mibefradil, a nondihydropyridine Ca2+ channel blocker. CACNA1H is abundantly expressed in both peripheral and central endings of the primary afferent neurons, regulating neuronal excitability and release of excitatory neurotransmitters.
Immunogeno
synthetic peptide CHVEGPQERARVAHS corresponding to amino acid residues 581-595 of rat CaV3.2. Epitope location: intracellular loop connecting D1-D2. Mouse, bovine, and canine have 14/15 residues identical; human has 13/15 residues identical.
Applicazioni
Anti-Calcium Channel CaV3.2 (α1H) antibody produced in rabbit is suitable for western blotting at a dilution of 1:200 using lysate from the ND7/23 cell line.
Applications in which this antibody has been used successfully, and the associated peer-reviewed papers, are given below.
Western Blotting (1 paper)
Western Blotting (1 paper)
Azioni biochim/fisiol
Calcium channel, voltage-dependent, T type, α1H subunit (CACNA1H) plays an essential role in regulating neuronal excitability and network oscillations in the brain. Mutations in the gene are associated with various forms of idiopathic generalized epilepsy. Gaining-of-function mutation in CACNA1H increases seizure susceptibility by directly altering neuronal electrical properties and indirectly by changing gene expression. CACNA1H acts as an important mediator of Ca2+ entry near the resting membrane potential. It plays a pivotal role in processing of pain signals and may serve as a novel target for development of drugs for the treatment of intractable pain resistant to currently available analgesics. CACNA1H up-regulation is involved in the pathophysiology of inflammatory, neuropathic and visceral pain.
Stato fisico
Lyophilized from phosphate buffered saline, pH 7.4, containing 1% bovine serum albumin, and 0.05% sodium azide.
Esclusione di responsabilità
Unless otherwise stated in our catalog or other company documentation accompanying the product(s), our products are intended for research use only and are not to be used for any other purpose, which includes but is not limited to, unauthorized commercial uses, in vitro diagnostic uses, ex vivo or in vivo therapeutic uses or any type of consumption or application to humans or animals.
Non trovi il prodotto giusto?
Prova il nostro Motore di ricerca dei prodotti.
Prodotti correlati
Codice della classe di stoccaggio
11 - Combustible Solids
Classe di pericolosità dell'acqua (WGK)
WGK 2
Punto d’infiammabilità (°F)
Not applicable
Punto d’infiammabilità (°C)
Not applicable
Scegli una delle versioni più recenti:
Possiedi già questo prodotto?
I documenti relativi ai prodotti acquistati recentemente sono disponibili nell’Archivio dei documenti.
Pierre-Olivier Demers-Giroux et al.
The Journal of biological chemistry, 288(41), 29281-29293 (2013-08-24)
T-type CaV3 channels are important mediators of Ca(2+) entry near the resting membrane potential. Little is known about the molecular mechanisms responsible for channel activation. Homology models based upon the high-resolution structure of bacterial NaV channels predict interaction between the
Despina Tsortouktzidis et al.
Frontiers in molecular neuroscience, 14, 667143-667143 (2022-01-25)
Precise genome editing in combination with viral delivery systems provides a valuable tool for neuroscience research. Traditionally, the role of genes in neuronal circuits has been addressed by overexpression or knock-out/knock-down systems. However, those techniques do not manipulate the endogenous
Hyun-Jee Park et al.
Cell calcium, 54(3), 226-235 (2013-07-16)
Voltage-activated Ca2+ channels are membrane protein machinery performing selective permeation of external calcium ions. The main Ca2+ selective filters of all high-voltage-activated Ca2+ channel isoforms are commonly composed of four Glu residues (EEEE), while those of low-voltage-activated T-type Ca2+ channel
K E Rose et al.
Neuroscience, 250, 263-274 (2013-07-23)
Previous behavioral studies have revealed that CaV3.2 T-type calcium channels support peripheral nociceptive transmission and electrophysiological studies have established the presence of T-currents in putative nociceptive sensory neurons of dorsal root ganglion (DRG). To date, however, the localization pattern of
Veit-Simon Eckle et al.
The Journal of physiology, 592(4), 795-809 (2013-11-28)
T-type calcium channels play essential roles in regulating neuronal excitability and network oscillations in the brain. Mutations in the gene encoding Cav3.2 T-type Ca(2+) channels, CACNA1H, have been found in association with various forms of idiopathic generalized epilepsy. We and
Il team dei nostri ricercatori vanta grande esperienza in tutte le aree della ricerca quali Life Science, scienza dei materiali, sintesi chimica, cromatografia, discipline analitiche, ecc..
Contatta l'Assistenza Tecnica.