45359
Epoxy Embedding Medium kit
embedding resin for electron microscopy
Sinônimo(s):
Epon™ substitute embedding medium kit
Faça loginpara ver os preços organizacionais e de contrato
About This Item
Código UNSPSC:
12171500
NACRES:
NA.47
Produtos recomendados
Nível de qualidade
pH
5-7
densidade
1.9 g/cm3
aplicação(ões)
hematology
histology
temperatura de armazenamento
2-8°C
Descrição geral
The Epoxy Embedding Medium Kit is a very widely used embedding medium for electron microscopy. The embedding formulation originally published by Luft (1961) is excellent for both plant and animal tissues. Due to the low viscosity of the resin, it penetrates the tissue specimen faster than Araldite and other polymers. It hardens easily and uniformly at low temperatures with the addition of dodecenylsuccinic anhydride (DDSA), methyl nadic anhydride (MNA), and the accelerator 2,4,6-tris(dimethylaminomethyl)phenol (DMP-30). Slight shrinkage may occur during curing. This kit is useful for embedding a variety of tissues as a wide range of hardness can be obtained with this resin to suit a specific tissue type by using two different anhydride curing agents (DDSA and MNA).
Aplicação
Epoxy Embedding Medium Kit has been used in the following applications:
- to study the role of NDRG2, an essential colonic epithelial barrier regulator, in gut homeostasis maintenance and colitis-associated tumor development
- to study the interaction of polymer scaffold nanofibers with growing cells
- to study the morphological characterization of postembryonic development of blood–spleen barrier in ducks
- to understand the role of NOD1/NOD2 receptors in Fusobacterium nucleatum-mediated neutrophil extracellular traps
Características e benefícios
- Excellent medium for embedding a wide variety of tissues, including both plant and animal.
- Facilitates rapid embedding (less than 3 hours).
- Low viscosity facilitates rapid tissue penetration.
- Desirable hardness is easy to obtain to suit a specific tissue type.
Componentes
45345 Epoxy Embedding Medium 2x250 ml
45347 Hardener MNA 250 ml
45346 Hardener DDSA 250 ml
45348 Accelerator DMP 30 250 ml
45347 Hardener MNA 250 ml
45346 Hardener DDSA 250 ml
45348 Accelerator DMP 30 250 ml
Informações legais
Epon is a trademark of Hexion, Inc.
produto relacionado
Nº do produto
Descrição
Preços
Palavra indicadora
Danger
Frases de perigo
Declarações de precaução
Classificações de perigo
Acute Tox. 4 Oral - Aquatic Chronic 4 - Eye Dam. 1 - Resp. Sens. 1 - Skin Corr. 1B - Skin Sens. 1 - STOT SE 3
Órgãos-alvo
Respiratory system
Código de classe de armazenamento
8A - Combustible corrosive hazardous materials
Ponto de fulgor (°F)
275.0 °F
Ponto de fulgor (°C)
135 °C
Escolha uma das versões mais recentes:
Já possui este produto?
Encontre a documentação dos produtos que você adquiriu recentemente na biblioteca de documentos.
Os clientes também visualizaram
A Sawaguchi et al.
Journal of microscopy, 234(2), 113-117 (2009-04-29)
The goal of specimen preparation for transmission electron microscopy is to obtain high-quality ultra-thin sections with which we can correlate cellular structure to physiological function. In this study, we newly developed a capsule-supporting ring that can be useful for resin
Emma Cantisani et al.
The Analyst, 144(7), 2375-2386 (2019-02-26)
Red stains are a common discolouration on stone cultural heritage all over the world. These are very difficult to remove and little is known about the reddish pigmentation. Numerous red stains were mapped on the Baptistery of San Giovanni in
Kunio Nagashima et al.
Methods in molecular biology (Clifton, N.J.), 697, 83-91 (2010-12-01)
This chapter outlines the procedures for ex vivo TEM preparation of nanoparticle-containing tissue or cell culture samples using an epoxy resin embedding method. The purpose of this procedure is to preserve the structure of tissue in a hardened epoxy block
Konstantin E Mochalov et al.
Ultramicroscopy, 182, 118-123 (2017-07-04)
In the past decade correlative microscopy, which combines the potentials of different types of high-resolution microscopies with a variety of optical microspectroscopy techniques, has been attracting increasing attention in material science and biological research. One of outstanding solutions in this
Investigation of the effects of semaphorin 3A on new bone formation in a rat calvarial defect model.
Sevinç Kenan et al.
Journal of cranio-maxillo-facial surgery : official publication of the European Association for Cranio-Maxillo-Facial Surgery, 47(3), 473-483 (2019-01-09)
This study investigates the effects of semaphorin 3A on new bone formation in an experimental rat model. Cortical bone defects, 5 mm, were created in the calvaria of 40 Wistar rats, which were then separated into three groups: empty defect (control)
Nossa equipe de cientistas tem experiência em todas as áreas de pesquisa, incluindo Life Sciences, ciência de materiais, síntese química, cromatografia, química analítica e muitas outras.
Entre em contato com a assistência técnica