Pular para o conteúdo
Merck
Todas as fotos(1)

Documentos Principais

202495

Sigma-Aldrich

Poly(ethylene glycol) methyl ether

average MN 750, methoxy, hydroxyl

Sinônimo(s):

Polyethylene glycol, Methoxy poly(ethylene glycol), Polyethylene glycol monomethyl ether, mPEG

Faça loginpara ver os preços organizacionais e de contrato


About This Item

Fórmula linear:
CH3(OCH2CH2)nOH
Número CAS:
Número MDL:
Código UNSPSC:
12162002
ID de substância PubChem:
NACRES:
NA.23

Nome do produto

Poly(ethylene glycol) methyl ether, average Mn 750

densidade de vapor

>1 (vs air)

Nível de qualidade

pressão de vapor

0.05 mmHg ( 20 °C)

Formulário

paste
solid

peso molecular

average Mn 750

índice de refração

n20/D 1.459

viscosidade

10.5 cSt(210 °F)(lit.)

temperatura de transição

Tm 30 °C

densidade

1.094 g/mL at 25 °C

Ω-final

hydroxyl

α-final

methoxy

cadeia de caracteres SMILES

O(CCO)C

InChI

1S/C3H8O2/c1-5-3-2-4/h4H,2-3H2,1H3

chave InChI

XNWFRZJHXBZDAG-UHFFFAOYSA-N

Procurando produtos similares? Visita Guia de comparação de produtos

Aplicação

Poly(ethylene glycol) methyl ether can be used:
  • As a chain transfer agent to synthesize amphiphilic block copolymers by metal-free ring-opening oligomerization.
  • As a precursor to prepare retinoic acid-polyethylene glycol nanoassembly as an efficient drug delivery system.
  • To prepare diblock copolymer with polylactic acid, which can be applied in the field of tissue engineering and drug delivery.

Código de classe de armazenamento

10 - Combustible liquids

Classe de risco de água (WGK)

WGK 1

Ponto de fulgor (°F)

359.6 °F - closed cup

Ponto de fulgor (°C)

182 °C - closed cup

Equipamento de proteção individual

Eyeshields, Gloves


Escolha uma das versões mais recentes:

Certificados de análise (COA)

Lot/Batch Number

Não está vendo a versão correta?

Se precisar de uma versão específica, você pode procurar um certificado específico pelo número do lote ou da remessa.

Já possui este produto?

Encontre a documentação dos produtos que você adquiriu recentemente na biblioteca de documentos.

Visite a Biblioteca de Documentos

Os clientes também visualizaram

Yi Wei et al.
Langmuir : the ACS journal of surfaces and colloids, 28(39), 13984-13992 (2012-09-04)
The microcosmic mechanisms of protein (recombinant human growth hormone, rhGH) incomplete release and stability from amphiphilic poly(monomethoxypolyethylene glycol-co-D,L-lactide) (mPEG-PLA, PELA) microspheres were investigated. PELA with different hydrophilicities (PELA-1, PELA-2, and PELA-3) based on various ratios of mPEG to PLA were
Prakash G Avaji et al.
Bioorganic & medicinal chemistry letters, 23(6), 1763-1767 (2013-02-16)
Saturated fatty acids (FA) were grafted using tyrosine as a spacer group to the cyclotriphosphazene ring along with equimolar hydrophilic methoxy poly(ethylene glycol) (MPEG) in cis-nongeminal way. Seven new cyclotriphosphazene amphiphiles were prepared from combinations of hydrophilic MPEGs with different
Mulu Z Tesfay et al.
Journal of virology, 87(7), 3752-3759 (2013-01-18)
We are developing oncolytic vesicular stomatitis viruses (VSVs) for systemic treatment of multiple myeloma, an incurable malignancy of antibody-secreting plasma cells that are specifically localized in the bone marrow. One of the presumed advantages for using VSV as an oncolytic
Seung-Young Lee et al.
Biomaterials, 34(2), 552-561 (2012-10-20)
Although targeted delivery mediated by ligand modified or tumor microenvironment sensitive nanocarriers has been extensively pursued for cancer chemotherapy, the efficiency is still limited by premature drug release after systemic administration. Herein we report a highly blood-stable, tumor-adaptable drug carrier
Lina Du et al.
Anti-cancer drugs, 24(2), 172-180 (2012-09-20)
A functionalized poly(amidoamine) (PAMAM) nanocarrier was designed and prepared to deliver anticancer drugs. The nanocarrier is a copolymer with a core-shell structure with 3.0 G PAMAM as the core and sequentially conjugated poly(2-(N,N-diethylamino)ethyl methacrylate) (pDEA) and methoxy-poly(ethylene glycol) 2000 (mPEG)

Artigos

Fouling Resistant Biomimetic Poly(Ethylene Glycol) Based Grafted Polymer Coatings

Progress in biotechnology fields such as tissue engineering and drug delivery is accompanied by an increasing demand for diverse functional biomaterials. One class of biomaterials that has been the subject of intense research interest is hydrogels, because they closely mimic the natural environment of cells, both chemically and physically and therefore can be used as support to grow cells. This article specifically discusses poly(ethylene glycol) (PEG) hydrogels, which are good for biological applications because they do not generally elicit an immune response. PEGs offer a readily available, easy to modify polymer for widespread use in hydrogel fabrication, including 2D and 3D scaffold for tissue culture. The degradable linkages also enable a variety of applications for release of therapeutic agents.

Devising biomaterial scaffolds that are capable of recapitulating critical aspects of the complex extracellular nature of living tissues in a threedimensional (3D) fashion is a challenging requirement in the field of tissue engineering and regenerative medicine.

Nossa equipe de cientistas tem experiência em todas as áreas de pesquisa, incluindo Life Sciences, ciência de materiais, síntese química, cromatografia, química analítica e muitas outras.

Entre em contato com a assistência técnica