• Home
  • Search Results
  • Identification of ApoA1, HPX and POTEE genes by omic analysis in breast cancer.

Identification of ApoA1, HPX and POTEE genes by omic analysis in breast cancer.

Oncology reports (2014-06-28)
Naci Cine, Ahmet Tarik Baykal, Deniz Sunnetci, Zafer Canturk, Muge Serhatli, Hakan Savli
ABSTRACT

Breast cancer is the most common cancer among women and accounts for 23% of all female types of cancers. It is well recognized that breast cancer represents a heterogeneous group of tumors, and the molecular events involved in the progression to cancer remain undetermined. Moreover, available prognostic and predictive markers are not sufficient for the accurate determination of the risk for many breast cancer patients. Thus, it is necessary to discover new molecular markers for accurate prediction of clinical outcome and individualized therapy. In the present study, we performed omics-based whole-genome trancriptomic and whole proteomic profiling with network and pathway analyses of breast tumors to identify gene expression patterns related to clinical outcome. A total of 20 samples from tumors and 14 normal appearing breast tissues were analyzed using both gene expression microarrays and LC-MS/MS. We identified 585 downregulated and 413 upregulated genes by gene expression microarrays. Among these genes, HPX, POTEE and ApoA1 were the most significant genes correlated with the proteomic profile. Our data revealed that these identified genes are closely related to breast cancer and may be involved in robust detection of disease progression.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Sigma-Aldrich
Acetonitrile, HPLC Plus, ≥99.9%
Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) trifluoroacetic acid, suitable for HPLC
Sigma-Aldrich
Acetonitrile, ACS reagent, ≥99.5%
Sigma-Aldrich
Acetonitrile, suitable for HPLC-GC, ≥99.8% (GC)
Sigma-Aldrich
Nitrogen, ≥99.998%
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) formic acid, suitable for HPLC
Sigma-Aldrich
Acetonitrile, HPLC Plus, ≥99.9%, poly-coated bottles
Supelco
Acetonitrile, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Acetonitrile, analytical standard
Sigma-Aldrich
Acetonitrile, biotech. grade, ≥99.93%
Sigma-Aldrich
Acetonitrile, ReagentPlus®, 99%
Sigma-Aldrich
Acetonitrile, electronic grade, 99.999% trace metals basis
Supelco
Residual Solvent - Acetonitrile, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Acetonitrile, suitable for DNA synthesis, ≥99.9% (GC)
Sigma-Aldrich
Acetonitrile solution, contains 0.05 % (w/v) ammonium formate, 0.1 % (v/v) formic acid, 5 % (v/v) water, suitable for HPLC
Sigma-Aldrich
Acetonitrile, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥99.5% (GC)
Sigma-Aldrich
Acetonitrile, ≥99.5%, ACS reagent
Sigma-Aldrich
Acetonitrile solution, contains 10.0% acetone, 40.0% 2-propanol, 0.05% formic acid
USP
Residual Solvent Class 2 - Acetonitrile, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Acetonitrile solution, contains 0.035 % (v/v) trifluoroacetic acid, suitable for HPLC
Sigma-Aldrich
Acetonitrile solution, contains 0.05 % (v/v) trifluoroacetic acid
Sigma-Aldrich
Anti-POTEE antibody produced in rabbit, Prestige Antibodies® Powered by Atlas Antibodies, affinity isolated antibody, buffered aqueous glycerol solution
Sigma-Aldrich
Acetonitrile
Supelco
Acetonitrile, HPLC grade, ≥99.93%