Conductive microemulsions for template CoNi electrodeposition.

Physical chemistry chemical physics : PCCP (2013-07-31)
Albert Serrà, Elvira Gómez, Gabriela Calderó, Jordi Esquena, Conxita Solans, Elisa Vallés
ABSTRACT

Microemulsions have been revealed as feasible templates to grow magnetic nanostructures using an electrodeposition method. Reducing agents are not required and the applied potential has been used as driving force of the nanostructure growth. A systematic study of conductive microemulsion systems to allow the CoNi electrodeposition process has been performed. Different surfactants and organic components have been tested to form microemulsions with a CoNi electrolytic bath as an aqueous component in order to define the microemulsions showing enough conductivity to perform an electrodeposition process from the aqueous component. By using microemulsions of the aqueous electrolyte solution-Triton X-100-diisopropyl adipate system, CoNi electrodeposition has been achieved, the structure of the deposits being dependent on the composition and structure of the microemulsion, which can act as a soft-template to obtain different discontinuous deposits. The magnetic properties of the CoNi deposits vary with their structure.

MATERIALS
Product Number
Brand
Product Description

Octoxinol 10, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Triton X-100 solution, BioUltra, for molecular biology, ~10% in H2O
Sigma-Aldrich
Triton X-305 solution, 70% in H2O
Sigma-Aldrich
Triton X-102
Sigma-Aldrich
Triton X-100, BioXtra
Sigma-Aldrich
Triton X-100, peroxide- and carbonyl-free
Sigma-Aldrich
Triton X-100, laboratory grade
Sigma-Aldrich
Triton X-100, for molecular biology
Sigma-Aldrich
Triton X-45