All Photos(2)

900442

Sigma-Aldrich

Graphene/PEDOT:PSS hybrid ink

dispersion in DMF

Synonym(s):
Graphene ink, G/PEDOT:PSS, Electrochemically exfoliated graphene ink, Conductive ink

Quality Level

form

dispersion (in DMF)

concentration

0.2 mg/mL (PEDOT:PSS)
1 mg/mL (electrochemically exfoliated graphene)

sheet resistance

500 Ω/sq, 20 nm film: 80% transmittance

Related Categories

General description

  • Graphene preparation method: Electrochemical exfoliation.
  • Graphene thickness by AFM: 80%, 1-3 layers.
  • Sheet size by AFM: 10 μm.
  • Oxygen content: 7.5% (by XPS) (C/O-ratio: 12.3).
  • Raman I_D/I_G ratio: 0.4.
  • Sheet resistance: 4.8 kΩ/sq.
  • Typical properties of films produced thereof (after spray coating):
a) 11 nm film: 90% transmittance, 1200 Ω/sq (as made).
b) 20 nm film: 80% transmittance, 500 Ω/sq (as made).

Packaging

50 mL in glass bottle

Signal Word

Danger

Hazard Classifications

Acute Tox. 4 Dermal - Acute Tox. 4 Inhalation - Eye Irrit. 2 - Flam. Liq. 3 - Repr. 1B

Storage Class Code

3 - Flammable liquids

WGK

WGK 2

Flash Point(F)

136.4 °F

Flash Point(C)

58 °C

Certificate of Analysis

Certificate of Origin

Zhaoyang Liu et al.
Advanced materials (Deerfield Beach, Fla.), 27(4), 669-675 (2014-12-03)
A novel solution fabrication of large-area, highly conductive graphene films by spray-coating of a hybrid ink of exfoliated graphene (EG)/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) (PH1000) is demonstrated. The fabricated graphene films exhibit excellent mechanical properties, thus enabling their application as bottom electrodes in
Peng You et al.
Advanced materials (Deerfield Beach, Fla.), 27(24), 3632-3638 (2015-05-15)
Semitransparent perovskite solar cells are prepared by laminating graphene transparent electrodes on the top for the first time. The device performance is optimized by improving the conductivity of the graphene electrodes and the contact between the graphene and the perovskite
Transparent graphene/PEDOT-PSS composite films as counter electrodes of dye-sensitized solar cells.
Hong, et al.
Electrochemical Communications, 10(10), 1555-1558 (2008)
Zhong-Shuai Wu et al.
Advanced materials (Deerfield Beach, Fla.), 27(24), 3669-3675 (2015-05-15)
Ultrathin printable graphene supercapacitors are demonstrated, based on solution-processed electrochemically exfoliated graphene hybrid films on an ultrathin poly(ethylene terephthalate) substrate, exhibiting an unprecedented volumetric capacitance of 348 F cm(-3) , an ultrahigh scan rate of 2000 V s(-1) , and

Articles

Organic Bioelectronic Materials and Devices for Bridging Biology and Traditional Electronics

Professor Rivnay (Northwestern University, USA) discusses using organic mixed conductors as an alternative to efficiently bridge the ionic world of biology with contemporary microelectronics.

Recent Advances in Scalable Synthesis and Processing of Two-Dimensional Materials

Recent Advances in Scalable Synthesis and Processing of Two-Dimensional Materials

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service