Gold nanoparticles

100 nm diameter, OD 1, stabilized suspension in 0.1 mM PBS, reactant free

Au NP, Gold colloid
Empirical Formula (Hill Notation):
Molecular Weight:
MDL number:
PubChem Substance ID:

Quality Level




~3.8E+9 particles/mL




100 nm


564-574 nm

storage temp.


SMILES string




InChI key


Looking for similar products? Visit Product Comparison Guide

General description

Gold nanoparticles may be prepared by reduction of metal salt precursors with reducing agents, such as by citrate reduction of HAuCl4 in water.


Gold nanoparticles are used in a wide range of applications. They may be used :
  • As conductors in printable inks,
  • In Photodynamic therapy,
  • In drug delivery and biomarkers,,
  • As calorimetric sensor,
  • In biological imaging,


25, 100 mL in poly bottle

Legal Information

Product of CytoDiagnostics, Inc.


NONH for all modes of transport

WGK Germany


Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Certificate of Analysis

Certificate of Origin

  1. How do I find price and availability?

    There are several ways to find pricing and availability for our products. Once you log onto our website, you will find the price and availability displayed on the product detail page. You can contact any of our Customer Sales and Service offices to receive a quote.  USA customers:  1-800-325-3010 or view local office numbers.

  2. What is the Department of Transportation shipping information for this product?

    Transportation information can be found in Section 14 of the product's (M)SDS.To access the shipping information for this material, use the link on the product detail page for the product. 

  3. My gold nanoparticles settle out of solution upon storage. Is this normal?

    Settling of gold nanoparticles on the bottom of the storage flask is completely normal and is especially common for larger sized particles, which settles at greater speed. Settling does not affect the performance of the particles. Prior to use, simply swirl the solution to properly disperse your gold nanoparticles and obtain a homogenous solution.

  4. Why does my gold nanoparticle solution turn violet when I add salt containing buffer?

    Due to repulsive forces arising from the surface charge of gold nanoparticles, an energy barrier must be overcome for individual particles to interact. When no (or small) amounts of electrolytes such as NaCl is present, this energy barrier is too strong for interaction to occur between particles. However, upon addition of NaCl this energy barrier is reduced allowing the gold nanoparticles to interact and aggregate. This aggregation causes a phenomenon called surface-plasmon coupling which changes the adsorption maximum of light to a higher wavelength resulting in a change in color of the solution.

  5. My question is not addressed here, how can I contact Technical Service for assistance?

    Ask a Scientist here.

Gang Peng et al.
Nature nanotechnology, 4(10), 669-673 (2009-10-08)
Conventional diagnostic methods for lung cancer are unsuitable for widespread screening because they are expensive and occasionally miss tumours. Gas chromatography/mass spectrometry studies have shown that several volatile organic compounds, which normally appear at levels of 1-20 ppb in healthy...
Gold Nanoparticle Sensor for the Visual Detection of Pork Adulteration in Meatball Formulation
Ali ME, et al.
Journal of Nanomaterials (2012)
Plastic-Compatible Low Resistance Printable Gold Nanoparticle Conductors for Flexible Electronics
Huang D, et al.
Journal of the Electrochemical Society, 150, G412-G417 null
Tanya Stuchinskaya et al.
Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology, 10(5), 822-831 (2011-04-02)
A 4-component antibody-phthalocyanine-polyethylene glycol-gold nanoparticle conjugate is described for use as a potential drug for targeted photodynamic cancer therapy. Gold nanoparticles (4 nm) were stabilised with a self-assembled layer of a zinc-phthalocyanine derivative (photosensitiser) and a heterobifunctional polyethylene glycol. Anti-HER2...
Steven D Perrault et al.
Proceedings of the National Academy of Sciences of the United States of America, 107(25), 11194-11199 (2010-06-11)
Many small molecular anticancer agents are often ineffective at detecting or treating cancer due to their poor pharmacokinetics. Using nanoparticles as carriers can improve this because their large size reduces clearance and improves retention within tumors, but it also slows...
Steven J. Oldenburg, Ph.D. provides an overview of lateral flow diagnostic assays and discusses the use of ultra-bright reporter particles based on the unique optical properties of gold nanoshells that significantly increase the sensitivity of lateral flow immunoassays.
Read More
Surface-enhanced Solar Energy Conversion Systems Using Gold and Silver Nanoparticles
Read More
Gold (Au) nanoparticles have tunable optical and electronic properties and are used in a number of applications including photovoltaics, sensors, drug delivery & catalysis.
Read More
Gold (Au) nanoparticles have tunable optical and electronic properties and are used in a number of applications including photovoltaics, sensors, drug delivery & catalysis.
Read More

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service

Social Media

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon


Research. Development. Production.

We are a leading supplier to the global Life Science industry with solutions and services for research, biotechnology development and production, and pharmaceutical drug therapy development and production.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Reproduction of any materials from the site is strictly forbidden without permission.