All Photos(2)



Indium tin oxide coated glass slide, square

surface resistivity 8-12 Ω/sq

ITO coated slide, square, ITO
Linear Formula:
In2O3 · (SnO2)x
CAS Number:
MDL number:
PubChem Substance ID:

Quality Level



surface resistivity

8-12 Ω/sq

L × W × thickness

25 mm × 25 mm × 1.1 mm


84% (nominal at 550nm)

refractive index

n20/D 1.517

SMILES string




InChI key


Looking for similar products? Visit Product Comparison Guide

General description

substrate: unpolished float glass, SiO2 passivated (200-300 Å)
Indium tin oxide (ITO) is widely used as transparent conducting oxides. Its major characteristics are electrical conductivity, optical transparency and the ease to be deposited as films.


ITO glass slides were used as a substrate for fabricating polymer solar cells based on blends of polymeric semiconductors and organic light emitting diodes (OLEDS). ITO substrates can also be used to design transparent heater arrays by etching the surface of the substrate by a printing tool. ITO cover slides may be used for closed digital microfluidic devices and as transparent electrodes in display and other optoelectronic devices.Some other probable uses that has been reported are:
  • Eumelanin samples prepared on ITO covered glass substrates.
  • Interface windows of the liquid cell for optical beam deflection (OBD) sensing contains a 20-nm-thick indium tin oxide film.
  • Mesoporous TiO2 films were formed on ITO conductive glasses.

Physical properties

Thickness of ITO coating is 1,200-1,600 Å

Storage Class Code

13 - Non Combustible Solids



Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificate of Analysis

Enter Lot Number to search for Certificate of Analysis (COA).

Certificate of Origin

Enter Lot Number to search for Certificate of Origin (COO).

More Documents

Quotes and Ordering


Organic Semiconductor Laser Materials

Organic Semiconductor Laser Materials

Organic and Hybrid Electronics in Optical Analytical Applications

Professor Shinar (Iowa State University, USA) summarizes the developments of a variety of sensor configurations based on organic and hybrid electronics, as low-cost, disposable, non-invasive, wearable bioelectronics for healthcare.

Inverted Organic Photovoltaic Devices Using Zinc Oxide Nanocomposites as Electron Transporting Layer Materials

Organic photovoltaics (OPVs) represent a low-cost, lightweight, and scalable alternative to conventional solar cells. While significant progress has been made in the development of conventional bulk heterojunction cells, new approaches are required to achieve the performance and stability necessary to enable commercially successful OPVs.

Titania Nanotubes: Synthesis and Applications

Electronically, it behaves as a wide band gap (3.2 eV) semiconductor and exhibits memristor properties.2 Optically, TiO2 has high opacity with a very high refractive index3 (>2.4), and it exhibits strong absorbance in the UV range.

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service