All Photos(2)



Indium tin oxide coated glass slide, rectangular

surface resistivity 70-100 Ω/sq, slide

ITO, ITO coated slide, rectangular
Linear Formula:
In2O3 · (SnO2)x
CAS Number:
MDL number:
PubChem Substance ID:

Quality Level

surface resistivity

70-100 Ω/sq

L × W × thickness

75 mm × 25 mm × 1.1 mm



refractive index

n20/D 1.517 (lit.)

SMILES string




InChI key


Looking for similar products? Visit Product Comparison Guide

General description

Indium tin oxide (ITO) is widely used as transparent conducting oxides. Its major characteristics are electrical conductivity, optical transparency and the ease to be deposited as films.


ITO cover slides may be used for closed digital microfluidic devices and as a transparent electrodes in display and other optoelectronic devices. Some other potential uses that have been reported are:
  • Eumelanin samples prepared on ITO covered glass substrates.
  • Interface windows of the liquid cell for optical beam deflection (OBD) sensing contain a 20-nm-thick indium tin oxide film.
  • Mesoporous TiO2 films were formed on ITO conductive glass substrates.


10, 25 pkg in poly tube

Physical properties

Thickness of ITO coating is 150-300 Å.
Resistance may increase to as high as 375 Ω when exposed to temperatures of 300 °C for 30 minutes or more.

Storage Class Code

13 - Non Combustible Solids



Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificate of Analysis

Enter Lot Number to search for Certificate of Analysis (COA).

Certificate of Origin

Enter Lot Number to search for Certificate of Origin (COO).

More Documents

Quotes and Ordering


Organic Semiconductor Laser Materials

Organic Semiconductor Laser Materials

Inverted Organic Photovoltaic Devices Using Zinc Oxide Nanocomposites as Electron Transporting Layer Materials

Organic photovoltaics (OPVs) represent a low-cost, lightweight, and scalable alternative to conventional solar cells. While significant progress has been made in the development of conventional bulk heterojunction cells, new approaches are required to achieve the performance and stability necessary to enable commercially successful OPVs.

Graphene-Based Transparent Conductive Electrodes

A transparent conductive electrode (TCE) is an essential component of various optoelectronic devices such as solar cells, liquid-crystal displays (LCD), light-emitting diodes (LED), and touch screens.

Nanoparticle-based Zinc Oxide Electron Transport Layers for Printed Organic Photodetectors

Recent progress in the area of solution-processed functional materials has led to the development of a variety of thin-film optoelectronic devices with significant promise in the industrial and consumer electronics fields.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service