Skip to Content
MilliporeSigma
All Photos(2)

Key Documents

550086

Sigma-Aldrich

Tungsten(VI) oxide

nanopowder, <100 nm particle size (TEM)

Synonym(s):

Tungstic anhydride

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
WO3
CAS Number:
Molecular Weight:
231.84
EC Number:
MDL number:
UNSPSC Code:
12352302
PubChem Substance ID:
NACRES:
NA.23

form

nanopowder

Quality Level

particle size

<100 nm (TEM)

density

7.16 g/mL at 25 °C (lit.)

SMILES string

O=[W](=O)=O

InChI

1S/3O.W

InChI key

ZNOKGRXACCSDPY-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

Tungsten oxide (WO3) nanopowder is a metallic powder that can be prepared by the calcination of ammonium paratungstate (APT) in the temperature range of 560°C and 850°C. It can be produced by a variety of techniques, such as electrodeposition, sputtering, milling, and chemical processes.

Application

WO3 can be used for a variety of applications, such as electronics, optics, gas sensors and elecctrochromism.

Storage Class

11 - Combustible Solids

wgk_germany

nwg

flash_point_f

Not applicable

flash_point_c

Not applicable

ppe

dust mask type N95 (US), Eyeshields, Gloves


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Formation of Ruthenium Cluster on Nanocrystalline Tungsten Trioxide.
Fujioka Y, et al.
The Journal of Physical Chemistry C, 117(15), 7506-7510 (2013)
?Writing-Reading-Erasing? on tungsten oxide films using the scanning electrochemical microscope
Turyan I, et al.
Advanced Materials, 12(5), 330-333 (2000)
Structural Properties of Pure and Nickel-Modified Nanocrystalline Tungsten Trioxide.
Fujioka Y, et al.
The Journal of Physical Chemistry C, 116(32), 17029-17039 (2012)
Thermal effects associated with the Raman spectroscopy of WO3 gas-sensor materials.
Garcia-Sanchez RF, et al.
The Journal of Physical Chemistry A, 117(50), 13825-13831 (2013)
A thin-film sensing element for ozone, humidity and temperature
Qu W and Wlodarski W
Sensors and Actuators B, Chemical, 64(1-3), 42-48 (2000)

Articles

The production of hydrogen by catalytic water splitting is important for a wide range of industries including renewable energy petroleum refining and for the production of methanol and ammonia in the chemical industry.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service