All Photos(2)

517003

Sigma-Aldrich

Iron(III) acetylacetonate

≥99.9% trace metals basis

Synonym(s):
Fe(acac)3, Ferric acetylacetonate, Iron(III) 2,4-pentanedionate, 2,4-Pentanedione iron(III) derivative
Linear Formula:
Fe(C5H7O2)3
CAS Number:
Molecular Weight:
353.17
Beilstein:
4157960
EC Number:
MDL number:
PubChem Substance ID:
NACRES:
NA.23

Quality Level

assay

≥99.9% trace metals basis

form

powder

reaction suitability

core: iron
reagent type: catalyst

mp

180-182 °C (dec.) (lit.)

density

5.24 g/mL at 25 °C (lit.)

SMILES string

CC(=O)\C=C(\C)O[Fe](O\C(C)=C/C(C)=O)O\C(C)=C/C(C)=O

InChI

1S/3C5H8O2.Fe/c3*1-4(6)3-5(2)7;/h3*3,6H,1-2H3;/q;;;+3/p-3/b3*4-3-;

InChI key

AQBLLJNPHDIAPN-LNTINUHCSA-K

Looking for similar products? Visit Product Comparison Guide

Application

MOCVD precursor for highly crystalline (Zn,Fe)Fe2O4 films and magnetic property measurements of these films. Iron (III) acetylacetonate may be used as a precursor for the synthesis of water-soluble magnetite nanoparticles, which may find applications in the area of magnetic hyperthermia treatment.
MOCVD precursor for highly crystalline (Zn,Fe)Fe2O4 films and magnetic property measurements of these films.

Packaging

50 g in poly bottle
10 g in glass bottle

Pictograms

CorrosionExclamation mark

Signal Word

Danger

Hazard Statements

Hazard Classifications

Acute Tox. 4 Dermal - Acute Tox. 4 Inhalation - Acute Tox. 4 Oral - Eye Dam. 1

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificate of Analysis

Certificate of Origin

Arreerat Jiamprasertboon et al.
Chemistry (Weinheim an der Bergstrasse, Germany), 25(48), 11337-11345 (2019-06-27)
Type I heterojunction films of α-Fe2 O3 /ZnO are reported here as a non-titania based photocatalyst, which shows remarkable enhancement in the photocatalytic properties towards stearic acid degradation under UVA-light exposure (λ=365 nm), with a quantum efficiency of ξ=4.42±1.54×10-4 molecules degraded/photon, which
Polymorphous transformations of nanometric iron (III) oxide: a review.
Zboril R, et al.
Chemistry of Materials, 23.14, 3255-3272 (2011)
Selective Detection of Iron (III) by Rhodamine-Modified Fe3O4 Nanoparticles.
Baodui, et al.
Angewandte Chemie (International Edition in English), 49.27, 4576-4579 (2010)
Studies of magnetite nanoparticles synthesized by thermal decomposition of iron (III) acetylacetonate in tri(ethylene glycol)
Maity D, et al.
Journal of magnetism and magnetic materials, 321(19), 3093-3098 (2009)
Hyun-Uk Park et al.
Ultrasonics sonochemistry, 58, 104673-104673 (2019-09-27)
In this work, we introduce composition-tunable core-shell-like PdM@Pt (M = Mn and Fe) nanoparticles (NPs) on carbon support (PdM@Pt/C) synthesized by one-pot sonochemical reactions using high-intensity ultrasonic probe (150 W, 20 kHz, with 13 mm solid probe) and investigate their electrocatalytic performance for oxygen reduction

Articles

Solvothermal Synthesis of Nanoparticles

Solvothermal synthesis is a method for preparing a variety of materials such as metals, semiconductors, ceramics, and polymers.

Synthesis of Magnetic Nanoparticles for Biosensing

Professor Randal Lee (University of Houston, USA) discusses design considerations for iron oxide magnetic nanospheres and nanocubes used for biosensing, including synthetic procedures, size, and shape. The effects of these variables are discussed for various volumetric-based and surface-based detection schemes.

Chemical Synthesis of Monodisperse Magnetic Nanoparticles

Magnetic nanoparticles have attracted tremendous attention due to their novel properties and their potential applications in magnetic recording, magnetic energy storage and biomedicine.

Vistas in Current Magnetic Materials Research

Magnetism and magnetic materials have been of scientific interest for over 1,000 years. More recently, fundamental investigations have focused on exploring the various types of magnetic materials and understanding the magnetic effects created by electric currents.

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service