MilliporeSigma
All Photos(1)

Documents

38534

Sigma-Aldrich

Polylactic acid

Mw ~60,000

Synonym(s):
Poly(2-hydroxypropionic acid)
CAS Number:
MDL number:
NACRES:
NA.23

form

solid

shelf life

limited shelf life, expiry date on the label

mol wt

Mn ~30,000
Mw ~60,000

InChI

1S/C3H6O3/c1-2(4)3(5)6/h2,4H,1H3,(H,5,6)

InChI key

JVTAAEKCZFNVCJ-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Related Categories

Compare Similar Items

View Full Comparison

Show Differences

1 of 4

This Item
704105GF45989881900825
Polylactic acid Mw ~60,000

Sigma-Aldrich

38534

Polylactic acid

Polycaprolactone average Mn 45,000

Sigma-Aldrich

704105

Polycaprolactone

vibrant-m

GF45989881

Polylactic Acid - Biopolymer

Polycaprolactone viscosity 0.40 dL/g 

Sigma-Aldrich

900825

Polycaprolactone

shelf life

limited shelf life, expiry date on the label

shelf life

-

shelf life

-

shelf life

-

mol wt

Mn ~30,000

mol wt

Mn 40,000-50,000, Mw 48,000-90,000, average Mn 45,000

mol wt

-

mol wt

-

General description

Polylactic acid(PLA) is a biodegradable polyester synthesized from lactic acid monomer via ring opening polymerization. Owing to its excellent thermal, mechanical and barrier properties, it is widely used in the field of tissue engineering, drug delivery, and orthopedic devices.

Application

Polylactic acid can be used to prepare tubular scaffolds via the electrospinning method. These scaffolds are applicable in vascular tissue engineering.

It can be used to prepare PLA/polyvinyl alcohol wound dressing membrane through electrospinning and coating method. The coating of PLA improves the mechanical strength of nanofiber and acts as a protective layer to control the release of drug to the wound site.

It can also be used to synthesize free-standing, flexible ultra-thin PLA nanofilms which can act as a matrix for adhesion, spreading, and proliferation of skeletal muscle cells.

Features and Benefits

  • Biocompatibility
  • Lower toxicity
  • Low cost
  • Better encapsulation

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Documents related to the products that you have purchased in the past have been gathered in the Document Library for your convenience.

Visit the Document Library

Difficulty Finding Your Product Or Lot/Batch Number?

Product numbers are combined with Pack Sizes/Quantity when displayed on the website (example: T1503-25G). Please make sure you enter ONLY the product number in the Product Number field (example: T1503).

Example:

T1503
Product Number
-
25G
Pack Size/Quantity

Additional examples:

705578-5MG-PW

PL860-CGA/SHF-1EA

MMYOMAG-74K-13

1000309185

enter as 1.000309185)

Having trouble? Feel free to contact Technical Service for assistance.

Lot and Batch Numbers can be found on a product's label following the words 'Lot' or 'Batch'.

Aldrich Products

  • For a lot number such as TO09019TO, enter it as 09019TO (without the first two letters 'TO').

  • For a lot number with a filling-code such as 05427ES-021, enter it as 05427ES (without the filling-code '-021').

  • For a lot number with a filling-code such as STBB0728K9, enter it as STBB0728 without the filling-code 'K9'.

Not Finding What You Are Looking For?

In some cases, a COA may not be available online. If your search was unable to find the COA you can request one.

Request COA

Customers Also Viewed

Slide 1 of 6

1 of 6

Poly(D,L-lactide) average Mn 20,000 (NMR), PDI ≤1.3

Sigma-Aldrich

767344

Poly(D,L-lactide)

Polyglycolide inherent viscosity 1.4dL/g

Sigma-Aldrich

457620

Polyglycolide

Poly(L-lactide) viscosity ~2.0 dL/g, 0.1 % (w/v) in chloroform(25 °C)

Sigma-Aldrich

81273

Poly(L-lactide)

Poly(L-lactide) viscosity ~4.0 dL/g, 0.1 % (w/v) in chloroform(25 °C)

Sigma-Aldrich

95468

Poly(L-lactide)

Zhenxing Fan et al.
Environmental technology, 33(19-21), 2369-2374 (2013-02-12)
Biological nitrate removal using wheat straw and polylactic acid (PLA) as both carbon source and biofilm support was investigated. The results showed that biofilm could develop on the surface of wheat straw within 15 d, the denitrification rate was 0.067
Tong Chen et al.
Carbohydrate polymers, 92(2), 1124-1132 (2013-02-13)
Core-shell structured multifunctional nanocarriers (NCs) of ZnO quantum dots-conjugated gold nanoparticles (Au NPs) as core and amphiphilic hyperbranched block copolymer as shell were synthesized for targeted anticancer drug delivery. The amphiphilic hyperbranched block copolymer contained poly(l-lactide) (PLA) inner arm and
L Pearce McCarty et al.
The Journal of bone and joint surgery. American volume, 95(6), 507-511 (2013-02-15)
A variety of complications associated with the use of poly-L-lactic acid (PLLA) implants, including anchor failure, osteolysis, glenohumeral synovitis, and chondrolysis, have been reported in patients in whom these implants were utilized for labral applications. We report on a large
Discussion: Autologous fat grafting and injectable dermal fillers for human immunodeficiency virus-associated facial lipodystrophy: a comparison of safety, efficacy, and long-term treatment outcomes.
David Teplica
Plastic and reconstructive surgery, 131(3), 507-509 (2013-03-01)
Huan Zhou et al.
Materials science & engineering. C, Materials for biological applications, 33(4), 2302-2310 (2013-03-19)
Fibrous bionanocomposites consisting of amorphous magnesium phosphate (AMP) nanospheres and polylactic acid (PLA) were fabricated by electrospinning. There are two important signatures of this paper. First, AMP, as an alternative to well-known calcium phosphate (CaP) materials, is added to PLA

Articles

Electrospinning: An Enabling Technique for Nanostructured Materials

In this article, we discuss issues critical to successful application of the electrospinning technique, including control of individual nanofibers to form secondary structures and assembly of nanofibers into 3D architectures.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service