MilliporeSigma
All Photos(1)

155721

Sigma-Aldrich

Methacrylic acid

contains 250 ppm MEHQ as inhibitor, 99%

Synonym(s):
2-Methacrylic acid, 2-Methylpropenoic acid
Linear Formula:
H2C=C(CH3)COOH
CAS Number:
Molecular Weight:
86.09
Beilstein:
1719937
EC Number:
MDL number:
PubChem Substance ID:
NACRES:
NA.23

Quality Level

vapor density

>3 (vs air)

vapor pressure

1 mmHg ( 20 °C)

assay

99%

form

liquid

autoignition temp.

752 °F

contains

250 ppm MEHQ as inhibitor

refractive index

n20/D 1.431 (lit.)

pH

2.0-2.2 (20 °C, 100 g/L)

bp

163 °C (lit.)

mp

12-16 °C (lit.)

density

1.015 g/mL at 25 °C (lit.)

SMILES string

C=C(C)C(O)=O

InChI

1S/C4H6O2/c1-3(2)4(5)6/h1H2,2H3,(H,5,6)

InChI key

CERQOIWHTDAKMF-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

Methacrylic acid (MAA) is an organic compound, colorless, viscous liquid. It is a monofunctional methacrylayte monomer. It is soluble in warm water and miscible in most organic solvents. MAA is used as a starting material for the production of its esters, especially methyl methacrylate and poly methyl methacrylate (PMMA).

Application

MAA is used to synthesize poly(methacrylic acid)-g-poly(ε-caprolactone) copolymers, polymeric blends with PMMA and hydroxyethyl methacrylate (HEMA)-MAA hydrogels.

Packaging

5, 100, 500 g in glass bottle
18 kg in VerSA-Flow™
2, 3 kg in glass bottle

Pictograms

CorrosionSkull and crossbones

Signal Word

Danger

Hazard Classifications

Acute Tox. 3 Dermal - Acute Tox. 4 Inhalation - Acute Tox. 4 Oral - Eye Dam. 1 - Skin Corr. 1A - STOT SE 3

Target Organs

Respiratory system

Storage Class Code

6.1C - Combustible, acute toxic Cat.3 / toxic compounds or compounds which causing chronic effects

WGK

WGK 1

Flash Point(F)

152.6 °F - closed cup

Flash Point(C)

67 °C - closed cup

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificate of Analysis

Enter Lot Number to search for Certificate of Analysis (COA).

Certificate of Origin

Enter Lot Number to search for Certificate of Origin (COO).

Synthesis of graft copolymers of poly(methacrylic acid)-g-poly(?-caprolactone) by coupling ROP and RAFT polymerizations
Kiehl J, et al.
Polymer, 53(3), 694-700 (2012)
Xi Yu et al.
Food chemistry, 299, 125144-125144 (2019-07-20)
Magnetic nanoparticles were synthesised to extract Sudan dyes from chilli powders. The adsorbents used were magnetic ferroferric oxide nanoparticles coated with polystyrene. The extraction procedures for Sudan dyes comprised liquid-solid extraction and magnetic solid phase extraction. The conditions were optimised
Reversible Addition Fragmentation Chain Transfer
(RAFT) Polymerization
Moad G, et al.
Material Matters, 5(1) (2010)
Thomas J Dursch et al.
Biomaterials, 35(2), 620-629 (2013-10-24)
Two-photon confocal microscopy and back extraction with UV/Vis-absorption spectrophotometry quantify equilibrium partition coefficients, k, for six prototypical drugs in five soft-contact-lens-material hydrogels over a range of water contents from 40 to 92%. Partition coefficients were obtained for acetazolamide, caffeine, hydrocortisone
Macro-micro relationship in nanostructured functional
Composites
Zanotto A, et al.
Express Polymer Letters, 6(5), 410-416 (2012)

Articles

Reversible Addition Fragmentation Chain Transfer (RAFT) Polymerization

RAFT (Reversible Addition Fragmentation chain Transfer) polymerization is a reversible deactivation radical polymerization (RDRP) and one of the more versatile methods for providing living characteristics to radical polymerization.

Continuous Flow Manufacturing for Monomer Synthesis

The manufacture of monomers for use in ophthalmic applications is driven by the need for higher purity, improved reliability of manufacturing supply, but ultimately by the need for the increased comfort, convenience, and safety of contact lens wearers. Daily wear contact lenses have the potential to fill this need for many customers; however, their widespread use is constrained by higher costs compared to weekly- or monthly-based lenses. New approaches that improve cost structure and result in higher quality raw materials are needed to help make contact lenses more affordable and accelerate growth of the contact lens market.

Stimuli-Responsive Materials as Intelligent Drug Delivery Systems

By altering the physicochemical properties, smart or intelligent drug delivery systems can be designed to deliver therapeutic molecules on-demand. Learn more about the application of stimuli-responsive materials in drug delivery.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service