264059
Indium
foil, thickness 0.127 mm, 99.99% trace metals basis
Synonym(s):
Indium element
Sign Into View Organizational & Contract Pricing
All Photos(1)
About This Item
Recommended Products
vapor pressure
<0.01 mmHg ( 25 °C)
Quality Level
assay
99.99% trace metals basis
form
foil
resistivity
8.37 μΩ-cm
thickness
0.127 mm
mp
156.6 °C (lit.)
density
7.3 g/mL at 25 °C (lit.)
SMILES string
[In]
InChI
1S/In
InChI key
APFVFJFRJDLVQX-UHFFFAOYSA-N
Looking for similar products? Visit Product Comparison Guide
Application
Indium foil is thermal interface material with high conductance that is used in cryogenics. It can also be used as indium vapor source for the preparation of indium nitride nanowires on a silicon substrate. It may also be used in the time of flight secondary ion mass spectroscopy (ToF-SIMS) for the analysis of powder samples.
Quantity
2.3 g = 50 × 50 mm; 9.2 g = 100 × 100 mm
signalword
Danger
hcodes
Hazard Classifications
STOT RE 1 Inhalation
target_organs
Lungs
Storage Class
6.1C - Combustible acute toxic Cat.3 / toxic compounds or compounds which causing chronic effects
wgk_germany
WGK 1
flash_point_f
Not applicable
flash_point_c
Not applicable
ppe
dust mask type N95 (US), Eyeshields, Gloves
Choose from one of the most recent versions:
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Cryogen-free operation of 10 V programmable Josephson voltage standards
IEEE Transactions on Applied Superconductivity, 23(3) (2012)
Selective-area growth of indium nitride nanowires on gold-patterned Si (100) substrates
Applied Physics Letters, 81(1), 22-24 (2002)
Characteristic fragment ions from lignin and polysaccharides in ToF-SIMS
Wood Science and Technology, 45(4), 767-785 (2011)
ACS applied materials & interfaces, 5(6), 2269-2277 (2013-03-05)
The surface formation oxide assists of visible to ultraviolet photoelectric conversion in α-In2Se3 hexagonal microplates has been explored. Hexagonal α-In2Se3 microplates with the sizes of 10s to 100s of micrometers were synthesized and prepared by the chemical vapor transport method
Chemical communications (Cambridge, England), 49(22), 2237-2239 (2013-02-12)
A reduced graphene oxide (RGO)-ZnIn(2)S(4) nanosheet composite was successfully synthesized via an in situ controlled growth process. The as-obtained RGO-ZnIn(2)S(4) composite showed excellent visible light H(2) production activity in the absence of noble metal cocatalysts.
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service