Skip to Content
MilliporeSigma
All Photos(1)

Key Documents

175552

Sigma-Aldrich

Trichlorosilane

99%

Synonym(s):

Hydrotrichlorosilane, Silicochloroform, Silicon chloride hydride, Trichloromonosilane

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
SiHCl3
CAS Number:
Molecular Weight:
135.45
EC Number:
MDL number:
UNSPSC Code:
12352101
PubChem Substance ID:
NACRES:
NA.22

vapor density

1 (vs air)

Quality Level

vapor pressure

9.75 psi ( 20 °C)

assay

99%

form

liquid

expl. lim.

70 %

bp

32-34 °C (lit.)

density

1.342 g/mL at 25 °C (lit.)

storage temp.

2-8°C

SMILES string

Cl[SiH](Cl)Cl

InChI

1S/Cl3HSi/c1-4(2)3/h4H

InChI key

ZDHXKXAHOVTTAH-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

Trichlorosilane is used as a reducing agent in certain chemical reactions or as a starting material for the synthesis of various organosilicon compounds. Trichlorosilane is generally used for the asymmetric hydrosilylation of olefins in the presence of palladium catalysts coordinated with chiral monodentate phosphorus ligands to generate chiral organosilanes.

Application

Trichlorosilane has been used to synthesize 11-dicyclohexylphosphino-12-phenyl-9,10-dihydro-9,10-ethenoanthracene (H-KITPHOS) via reduction of 11-dicyclohexylphosphinoyl-12-phenyl-9,10-dihydro-9,10-ethenoanthracene.
Other possible applications:
  • Asymmetric reduction of N-aryl ketimines in the presence of a novel

L-valine-derived catalyst to form secondary amines.
  • Hydrosilylation of imidazolinones to form chiral imidazolidinones in the presence of a 2,2′-bispyrrolidine based Lewis base organocatalyst.
  • Trichlorosilane activated with chiral N-formylproline

derivatives is an effective reagent for the reduction of imines to form
enantiomerically enriched amines.
  • Trichlorosilane reacts with dimethylformamide to form hypervalent hydridosilicates, which can reduce aldehydes to alcohols, imines to amines, and also for the reductive amination of aldehydes.

signalword

Danger

Hazard Classifications

Acute Tox. 3 Inhalation - Acute Tox. 4 Oral - Eye Dam. 1 - Flam. Liq. 1 - Skin Corr. 1A - Water-react 1

Storage Class

4.3 - Hazardous materials which set free flammable gases upon contact with water

wgk_germany

WGK 1

flash_point_f

<-2.2 °F - Equilibrium method

flash_point_c

< -19 °C - Equilibrium method

ppe

Faceshields, Gloves, Goggles


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

First chemo-and stereoselective reduction of imines using trichlorosilane activated with N-formylpyrrolidine derivatives
Iwasaki F
Tetrahedron Letters, 42(13), 2525-2527 (2001)
Trinh Lam et al.
Scientific reports, 7(1), 1188-1188 (2017-04-28)
A chemically patterned microfluidic paper-based analytical device (C-µPAD) is developed to create fluidic networks by forming hydrophobic barriers using chemical vapor deposition (CVD) of trichlorosilane (TCS) on a chromatography paper. By controlling temperature, pattern size, and CVD duration, optimal conditions
Naama Peor et al.
Journal of the American Chemical Society, 130(12), 4158-4165 (2008-03-05)
Electronic structures at the Si/SiO2/molecule interfaces were studied by Kelvin probe techniques (contact potential difference) and compared to theoretical values derived by the Helmholtz equation. Two parameters influencing the electronic properties of n-type <100> Si/SiO2 substrates were systematically tuned: the
Hyundong Yoo et al.
Scientific reports, 8(1), 6904-6904 (2018-05-04)
Silicon (Si) based materials are highly desirable to replace currently used graphite anode for lithium ion batteries. Nevertheless, its usage is still a big challenge due to poor battery performance and scale-up issue. In addition, two-dimensional (2D) architectures, which remain
S J Yuan et al.
ACS applied materials & interfaces, 1(3), 640-652 (2010-04-02)
To improve the biocorrosion resistance of stainless steel (SS) and to confer the bactericidal function on its surface for inhibiting bacterial adhesion and biofilm formation, well-defined inorganic-organic hybrid coatings, consisting of the inner compact titanium oxide multilayers and outer dense

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service