Iron is an essential element for life. However, the iron overload can be toxic. Here, we investigated the significant increase of tenellin and iron-tenellin complex production in ferricrocin-deficient mutants of Beauveria bassiana. Our chemical analysis indicated that the ferricrocin-deficient mutants T1, T3 and T5 nearly abolished ferricrocin production. In turn, these mutants had significant accumulation of iron-tenellin complex in their mycelia at 247-289 mg g(-1) cell dry weight under iron-replete condition. Both tenellin and iron-tenellin complex were not detected in the wild-type under such condition. Mass analysis of the mutants' crude extracts demonstrated that tenellin formed a 3:1 complex with iron in the absence of ferricrocin. The unexpected link between ferricrocin and tenellin biosynthesis in ferricrocin-deficient mutants could be a survival strategy during iron-mediated oxidative stress.