跳转至内容
Merck
  • Circovirus transport proceeds via direct interaction of the cytoplasmic dynein IC1 subunit with the viral capsid protein.

Circovirus transport proceeds via direct interaction of the cytoplasmic dynein IC1 subunit with the viral capsid protein.

Journal of virology (2014-12-30)
Jingjing Cao, Cui Lin, Huijuan Wang, Lun Wang, Niu Zhou, Yulan Jin, Min Liao, Jiyong Zhou
摘要

Microtubule transport of circovirus from the periphery of the cell to the nucleus is essential for viral replication in early infection. How the microtubule is recruited to the viral cargo remains unclear. In this study, we observed that circovirus trafficking is dependent on microtubule polymerization and that incoming circovirus particles colocalize with cytoplasmic dynein and endosomes. However, circovirus binding to dynein was independent of the presence of microtubular α-tubulin and translocation of cytoplasmic dynein into the nucleus. The circovirus capsid (Cap) subunit enhanced microtubular acetylation and directly interacted with intermediate chain 1 (IC1) of dynein. N-terminal residues 42 to 100 of the Cap viral protein were required for efficient binding to the dynein IC1 subunit and for retrograde transport. Knockdown of IC1 decreased virus transport and replication. These results demonstrate that Cap is a direct ligand of the cytoplasmic dynein IC1 subunit and an inducer of microtubule α-tubulin acetylation. Furthermore, Cap recruits the host dynein/microtubule machinery to facilitate transport toward the nucleus by an endosomal mechanism distinct from that used for physiological dynein cargo. Incoming viral particles hijack the intracellular trafficking machinery of the host in order to migrate from the cell surface to the replication sites. Better knowledge of the interaction between viruses and virus proteins and the intracellular trafficking machinery may provide new targets for antiviral therapies. Currently, little is known about the molecular mechanisms of circovirus transport. Here, we report that circovirus particles enter early endosomes and utilize the microtubule-associated molecular motor dynein to travel along microtubules. The circovirus capsid subunit enhances microtubular acetylation, and N-terminal residues 42 to 100 directly interact with the dynein IC1 subunit during retrograde transport. These findings highlight a mechanism whereby circoviruses recruit dynein for transport to the nucleus via the dynein/microtubule machinery.

材料
货号
品牌
产品描述

Sigma-Aldrich
盐酸, ACS reagent, 37%
Sigma-Aldrich
盐酸, ACS reagent, 37%
Sigma-Aldrich
单克隆抗-FLAG® M2 小鼠抗, 1 mg/mL, clone M2, affinity isolated antibody, buffered aqueous solution (50% glycerol, 10 mM sodium phosphate, and 150 mM NaCl, pH 7.4)
Sigma-Aldrich
氯化氢 溶液, 4.0 M in dioxane
Sigma-Aldrich
DAPI, for nucleic acid staining
Sigma-Aldrich
环己酰亚胺,大包装, from microbial, ≥94% (TLC)
Sigma-Aldrich
盐酸 溶液, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
盐酸, meets analytical specification of Ph. Eur., BP, NF, fuming, 36.5-38%
Sigma-Aldrich
苯甲磺酰氟, ≥98.5% (GC)
Sigma-Aldrich
盐酸, 37 wt. % in H2O, 99.999% trace metals basis
Sigma-Aldrich
盐酸, 36.5-38.0%, BioReagent, for molecular biology
Sigma-Aldrich
盐酸, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., fuming, ≥37%, APHA: ≤10
Sigma-Aldrich
氯化氢 溶液, 2.0 M in diethyl ether
Sigma-Aldrich
环己酰亚胺 溶液, Ready-Made Solution, microbial, 100 mg/mL in DMSO, Suitable for cell culture
Supelco
盐酸 溶液, volumetric, 0.1 M HCl (0.1N), endotoxin free
Sigma-Aldrich
海美溴铵, ≥94% (titration)
Sigma-Aldrich
丁酸钠, 98%
Sigma-Aldrich
诺考达唑, ≥99% (TLC), powder
Sigma-Aldrich
环己酰亚胺,大包装, ≥90% (HPLC)
Sigma-Aldrich
正钒酸钠, ≥90% (titration)
Sigma-Aldrich
盐酸, SAJ first grade, 35.0-37.0%
Sigma-Aldrich
苯甲磺酰氟, ≥99.0% (T)
Sigma-Aldrich
氯化氢 溶液, 1.0 M in diethyl ether
Sigma-Aldrich
盐酸 溶液, 1 M
Sigma-Aldrich
盐酸, JIS special grade, 35.0-37.0%
Sigma-Aldrich
盐酸, puriss., 24.5-26.0%
Sigma-Aldrich
氯化氢, ReagentPlus®, ≥99%
Sigma-Aldrich
曲古抑菌素A, ≥98% (HPLC), from Streptomyces sp.
Sigma-Aldrich
正钒酸钠, 99.98% trace metals basis
Sigma-Aldrich
盐酸 溶液, ~6 M in H2O, for amino acid analysis