推荐产品
一般說明
L-Alanine Dehydrogenase has a N-terminal substrate-binding domain and a C-terminal NAD-binding domain.
應用
L-Alanine Dehydrogenase from Bacillus subtilis has been used in the carbon nanotube columns for H2-driven biocatalysis hydrogenation studies.
L-Alanine dehydrogenase converts L-alanine to pyruvate and ammonium. L-Alanine dehydrogenase from Bacillus subtilis may be used to study enzyme inactivation and protection .
生化/生理作用
L-Alanine Dehydrogenase is essential for sporulation in Bacillus subtilis.
L-Alanine dehydrogenase is a stereospecific dehydrogenase that catalyzes the reversible deamination of L-alanine to pyruvate and ammonium. It is important for the generation of pyruvate during sporulation. L-Alanine dehydrogenase from Bacillus subtilis has a predominately ordered kinetic mechanism in which NAD binds before L-alanine. Subsequently, ammonia, pyruvate and NADH are released in that specific order. Optimal pH for the amination reaction is 8.8-9.0, whereas it is 10-10.5 for the deamination reaction. The enzyme is inactivated by divalent metal ions and p-chloromercuribenzoate, mercuric ion being most effective. The inactivation may be reversed by L- or D-cysteine.
單位定義
One unit will convert 1.0 μmole of L-alanine to pyruvate and NH3 per min at pH 10.0 at 25 °C.
外觀
Suspension in 2.4 M (NH4)2SO4 solution, pH 7.0
儲存類別代碼
12 - Non Combustible Liquids
水污染物質分類(WGK)
WGK 2
閃點(°F)
Not applicable
閃點(°C)
Not applicable
個人防護裝備
Eyeshields, Gloves, multi-purpose combination respirator cartridge (US)
H 2-Driven biocatalytic hydrogenation in continuous flow using enzyme-modified carbon nanotube columns
Chemical Communications (Cambridge, England), 53(71), 9839-9841 (2017)
Alanine dehydrogenase (ald) is required for normal sporulation in Bacillus subtilis.
Journal of Bacteriology, 175(21), 6789-6796 (1993)
Domain motions and functionally-key residues of l-alanine dehydrogenase revealed by an elastic network model
International Journal of Molecular Sciences, 16(12), 29383-29397 (2015)
The Journal of biological chemistry, 272(4), 2276-2284 (1997-01-24)
L-Alanine dehydrogenase from Bacillus subtilis was inactivated with two different lysine-directed chemical reagents, i.e. 2,4, 6-trinitrobenzenesulfonic acid and N-succinimidyl 3-(2-pyridyldithio)propionate. In both cases, the inactivation followed pseudo first-order kinetics, with a 1:1 stoichiometric ratio between the reagent and the enzyme
Applied microbiology and biotechnology, 77(2), 355-366 (2007-09-18)
Escherichia coli W was genetically engineered to produce L: -alanine as the primary fermentation product from sugars by replacing the native D: -lactate dehydrogenase of E. coli SZ194 with alanine dehydrogenase from Geobacillus stearothermophilus. As a result, the heterologous alanine
商品
Instructions for working with enzymes supplied as ammonium sulfate suspensions
我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.
联系技术服务部门