Passa al contenuto
Merck
  • Extending an in vitro panel for estrogenicity testing: the added value of bioassays for measuring antiandrogenic activities and effects on steroidogenesis.

Extending an in vitro panel for estrogenicity testing: the added value of bioassays for measuring antiandrogenic activities and effects on steroidogenesis.

Toxicological sciences : an official journal of the Society of Toxicology (2014-06-15)
Si Wang, Jeroen C W Rijk, Harrie T Besselink, René Houtman, Ad A C M Peijnenburg, Abraham Brouwer, Ivonne M C M Rietjens, Toine F H Bovee
ABSTRACT

In the present study, a previously established integrated testing strategy (ITS) for in vitro estrogenicity testing was extended with additional in vitro assays in order to broaden its sensitivity to different modes of action resulting in apparent estrogenicity, i.e., other than estrogen receptor (ER) binding. To this end, an extra set of 10 estrogenic compounds with modes of action in part different from ER binding, were tested in the previously defined ITS, consisting of a yeast estrogen reporter gene assay, an U2OS ERα CALUX reporter gene assay and a cell-free coregulator binding assay. Two androgen reporter gene assays and the enhanced H295R steroidogenesis assay were added to that previous defined ITS. These assays had added value, as several estrogenic model compounds also elicited clear and potent antiandrogenic properties and in addition also showed effects on steroidogenesis that might potentiate their apparent estrogenic effects in vivo. Adding these assays, examining mechanisms of action for estrogenicity apart from ERα binding, gives a more complete and comprehensive assessment of the ability of test compounds to interfere with endocrine signaling. It was concluded that the extended ITS will go beyond in vivo estrogenicity testing by the uterotrophic assay, thereby contributing to the 3R-principles.

MATERIALI
N° Catalogo
Marchio
Descrizione del prodotto

Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Metanolo, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Ethyl alcohol, Pure 200 proof, for molecular biology
Sigma-Aldrich
Dimetil solfossido, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
Acetone, ACS reagent, ≥99.5%
Sigma-Aldrich
Dimetil solfossido, ACS reagent, ≥99.9%
Sigma-Aldrich
Tetraidrofurano, inhibitor-free, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Dimetil solfossido, for molecular biology
Sigma-Aldrich
Metanolo, ACS reagent, ≥99.8%
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, ACS reagent, ≥99.5%
Sigma-Aldrich
Acido acetico, glacial, ACS reagent, ≥99.7%
Sigma-Aldrich
Dimetil solfossido, suitable for HPLC, ≥99.7%
Sigma-Aldrich
Acetonitrile, HPLC Plus, ≥99.9%
Sigma-Aldrich
Acetone, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Dimetil solfossido, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
Metanolo, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Tamoxifene, ≥99%
Sigma-Aldrich
Acido acetico, glacial, ReagentPlus®, ≥99%
Sigma-Aldrich
Acetone, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%
Sigma-Aldrich
Tetraidrofurano, contains 250 ppm BHT as inhibitor, ACS reagent, ≥99.0%
Sigma-Aldrich
Dimetil solfossido, ReagentPlus®, ≥99.5%
Sigma-Aldrich
Acido formico, reagent grade, ≥95%
Sigma-Aldrich
Bicarbonato di sodio, ACS reagent, ≥99.7%
Sigma-Aldrich
Metanolo, HPLC Plus, ≥99.9%
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, meets USP testing specifications
Sigma-Aldrich
Acido formico, ACS reagent, ≥96%
Sigma-Aldrich
Bicarbonato di sodio, powder, BioReagent, for molecular biology, suitable for cell culture, suitable for insect cell culture