Passa al contenuto
Merck
  • Simulation of drug distribution in the vitreous body after local drug application into intact vitreous body and in progress of posterior vitreous detachment.

Simulation of drug distribution in the vitreous body after local drug application into intact vitreous body and in progress of posterior vitreous detachment.

Journal of pharmaceutical sciences (2013-12-07)
Christian Loch, Malte Bogdahn, Sandra Stein, Stefan Nagel, Rudolf Guthoff, Werner Weitschies, Anne Seidlitz
ABSTRACT

Intravitreal injections and drug-loaded implants are current approaches to treat diseases of the posterior eye. To investigate the release of active agents and their distribution in the vitreous body, a new test system was developed that enables a realistic simulation of eye motions. It is called the eye movement system (EyeMoS). In combination with a previously developed model containing a polyacrylamide gel as a substitute for the vitreous body, this new system enables the characterization of the influence of eye motions on drug distribution within the vitreous body. In the presented work, the distribution of fluorescence-tagged model drugs of different molecular weight within the simulated vitreous was examined under movement with the EyeMoS and without movement. By replacing a part of the gel in the simulated vitreous body with buffer, the influence of the progress of posterior vitreous detachment (PVD) on the distribution of these model substances was also studied. The results indicate that convective forces may be of predominate influence on initial drug distribution. The impact of these forces on drug transport increases with simulated progression of PVD. Using the EyeMoS, the investigation of release and distribution from intravitreal drug delivery systems becomes feasible under biorelevant conditions.

MATERIALI
N° Catalogo
Marchio
Descrizione del prodotto

Sigma-Aldrich
Metanolo, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Metanolo, ACS reagent, ≥99.8%
Sigma-Aldrich
Metanolo, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Metanolo, HPLC Plus, ≥99.9%
Sigma-Aldrich
N,N,N′,N′-tetrametil-etilendiammina, BioReagent, suitable for electrophoresis, ≥99.0%
Sigma-Aldrich
Metanolo, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Metanolo, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
Metanolo, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
N,N,N′,N′-tetrametil-etilendiammina, BioReagent, for molecular biology, ≥99% (GC)
Sigma-Aldrich
Metanolo, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
N,N,N′,N′-tetrametil-etilendiammina, ≥99.5%, purified by redistillation
Sigma-Aldrich
Metanolo, BioReagent, ≥99.93%
Sigma-Aldrich
Fluorescein 5(6)-isothiocyanate, BioReagent, suitable for fluorescence, mixture of 2 components, ≥90% (HPLC)
Sigma-Aldrich
Fluorescein isothiocyanate isomer I, suitable for protein labeling, ≥90% (HPLC), powder
Sigma-Aldrich
Metanolo, ACS reagent, ≥99.8%
Sigma-Aldrich
Metanolo, Absolute - Acetone free
USP
Metanolo, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Metanolo, ACS reagent, ≥99.8%
Sigma-Aldrich
Metanolo, anhydrous, 99.8%
Sigma-Aldrich
Fluorescein 5(6)-isothiocyanate, ≥90% (HPLC)
Sigma-Aldrich
Metanolo, puriss., meets analytical specification of Ph Eur, ≥99.7% (GC)
Sigma-Aldrich
Fluorescein isothiocyanate isomer I, ≥97.5% (HPLC)
Sigma-Aldrich
N,N,N′,N′-tetrametil-etilendiammina, ReagentPlus®, 99%
Supelco
Metanolo, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Metanolo, analytical standard
Sigma-Aldrich
Metanolo, NMR reference standard
Sigma-Aldrich
Methanol solution, NMR reference standard, 4% in methanol-d4 (99.8 atom % D), NMR tube size 3 mm × 8 in.
Sigma-Aldrich
Methanol-12C, 99.95 atom % 12C
Sigma-Aldrich
Anti-Human IgG (H+L)-Rhodamine antibody produced in goat, affinity isolated antibody, lyophilized powder