Skip to Content
MilliporeSigma
All Photos(3)

Key Documents

441090

Sigma-Aldrich

2,2′-Azobis(2-methylpropionitrile)

98%

Synonym(s):

α,α′-Azoisobutyronitrile, AIBN, Azobisisobutyronitrile, Free radical initiator

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
(CH3)2C(CN)N=NC(CH3)2CN
CAS Number:
Molecular Weight:
164.21
Beilstein/REAXYS Number:
1708400
EC Number:
MDL number:
UNSPSC Code:
12162002
PubChem Substance ID:
NACRES:
NA.23

Quality Level

assay

98%

form

powder

mp

102-104 °C (dec.) (lit.)

storage temp.

2-8°C

SMILES string

CC(C)(\N=N\C(C)(C)C#N)C#N

InChI

1S/C8H12N4/c1-7(2,5-9)11-12-8(3,4)6-10/h1-4H3/b12-11+

InChI key

OZAIFHULBGXAKX-VAWYXSNFSA-N

Looking for similar products? Visit Product Comparison Guide

Related Categories

Application

2,2′-Azobis(2-methylpropionitrile) can be used as an initiator in the preparation of:
  • Polystyrene by soap-free emulsion polymerization.
  • Molecularly imprinted polymer(MIP) using 1-vinyl imidazole. MIP can be used to quantify acid violet 19 dye in river water samples.

Storage and Stability

Warning: these products are subject to the Explosives Act and must be transported refrigerated - additional costs for transport will apply.

pictograms

FlameExclamation mark

signalword

Danger

Hazard Classifications

Acute Tox. 4 Inhalation - Acute Tox. 4 Oral - Aquatic Chronic 3 - Self-react. C

supp_hazards

Storage Class

4.1A - Other explosive hazardous materials

wgk_germany

WGK 2

flash_point_f

122.0 °F

flash_point_c

50 °C

ppe

dust mask type N95 (US), Eyeshields, Faceshields, Gloves, type P3 (EN 143) respirator cartridges


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Tetrahedron Letters, 48, 5585-5585 (2007)
Lianghui Liu et al.
Organic letters, 14(22), 5692-5695 (2012-10-31)
In the presence of a catalytic amount of radical initiator AIBN, primary amines are oxidatively coupled to imines and tertiary amines are cyanated to α-aminonitriles. These "metal-free" aerobic oxidative coupling reactions may find applications in a wide range of "green"
Bor-Shiunn Lee et al.
Journal of endodontics, 37(2), 246-249 (2011-01-18)
We have developed new urethane acrylate-based root canal sealers using polycarbonate (PC) as polyol and 2,2-azobis(2-methyl)butyronitrile (AMBN) as a thermal initiator. The purpose of this study was to compare the properties among a group of seven sealers: (1) polybutyleneadipate (PBA)
Wenwen Li et al.
Macromolecular rapid communications, 32(1), 74-81 (2011-03-25)
Amphiphilic star shaped polymers with poly(ethylene oxide) (PEO) arms and cross-linked hydrophobic core were synthesized in water via either conventional free radical polymerization (FRP) or atom transfer radical polymerization (ATRP) techniques using a simple "arm-first" method. In FRP, PEO based
K Shivaji Sharma et al.
Langmuir : the ACS journal of surfaces and colloids, 24(23), 13581-13590 (2008-11-05)
A novel class of nonionic amphipols (NAPols) designed to handle membrane proteins in aqueous solutions has been synthesized, and its solution properties have been examined. These were synthesized through free radical cotelomerization of glucose-based hydrophilic and amphiphilic monomers derived from

Articles

To keep pace with Moore′s Law, there is a continuing need in the semiconductor industry to achieve higher circuit density in microelectronic devices.

An article regarding common FAQs for initiators and stabilizers.

RAFT (Reversible Addition Fragmentation chain Transfer) polymerization is a reversible deactivation radical polymerization (RDRP) and one of the more versatile methods for providing living characteristics to radical polymerization.

The manufacture of monomers for use in ophthalmic applications is driven by the need for higher purity, improved reliability of manufacturing supply, but ultimately by the need for the increased comfort, convenience, and safety of contact lens wearers. Daily wear contact lenses have the potential to fill this need for many customers; however, their widespread use is constrained by higher costs compared to weekly- or monthly-based lenses. New approaches that improve cost structure and result in higher quality raw materials are needed to help make contact lenses more affordable and accelerate growth of the contact lens market.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service