Skip to Content
MilliporeSigma
  • Mutations in TUBB8 cause a multiplicity of phenotypes in human oocytes and early embryos.

Mutations in TUBB8 cause a multiplicity of phenotypes in human oocytes and early embryos.

Journal of medical genetics (2016-06-09)
Ruizhi Feng, Zheng Yan, Bin Li, Min Yu, Qing Sang, Guoling Tian, Yao Xu, Biaobang Chen, Ronggui Qu, Zhaogui Sun, Xiaoxi Sun, Li Jin, Lin He, Yanping Kuang, Nicholas J Cowan, Lei Wang
ABSTRACT

TUBB8 is a primate-specific β-tubulin isotype whose expression is confined to oocytes and the early embryo. We previously found that mutations in TUBB8 caused oocyte maturation arrest. The objective was to describe newly discovered mutations in TUBB8 and to characterise the accompanying spectrum of phenotypes and modes of inheritance. Patients with oocyte maturation arrest were sequenced with respect to TUBB8. We investigated the effects of identified mutations in vitro, in cultured cells and in mouse oocytes. Seven heterozygous missense and two homozygous mutations were identified. These mutations cause a range of folding defects in vitro, different degrees of microtubule disruption upon expression in cultured cells and interfere to varying extents in the proper assembly of the meiotic spindle in mouse oocytes. Several of the newly discovered TUBB8 mutations result in phenotypic variability. For example, oocytes harbouring any of three missense mutations (I210V, T238M and N348S) could extrude the first polar body. Moreover, they could be fertilised, although the ensuing embryos became developmentally arrested. Surprisingly, oocytes from patients harbouring homozygous TUBB8 mutations that in either case preclude the expression of a functional TUBB8 polypeptide nonetheless contained identifiable spindles. Our data substantially expand the range of dysfunctional oocyte phenotypes incurred by mutation in TUBB8, underscore the independent nature of human oocyte meiosis and differentiation, extend the class of genetic diseases known as the tubulinopathies and provide new criteria for the qualitative evaluation of meiosis II (MII) oocytes for in vitro fertilization (IVF).

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Monoclonal ANTI-FLAG® M2-Cy3 antibody produced in mouse, clone M2, purified immunoglobulin, buffered aqueous solution (Supplied as a solution in 10 mM sodium phosphate)
Sigma-Aldrich
Monoclonal Anti-α-Tubulin antibody produced in mouse, clone DM1A, ascites fluid
Sigma-Aldrich
Anti-β-Tubulin−FITC antibody, Mouse monoclonal, clone TUB 2.1, purified from hybridoma cell culture