Skip to Content
MilliporeSigma
  • Quantification of 15 bile acids in lake charr feces by ultra-high performance liquid chromatography-tandem mass spectrometry.

Quantification of 15 bile acids in lake charr feces by ultra-high performance liquid chromatography-tandem mass spectrometry.

Journal of chromatography. B, Analytical technologies in the biomedical and life sciences (2015-08-09)
Ke Li, Tyler J Buchinger, Ugo Bussy, Skye D Fissette, Nicholas S Johnson, Weiming Li
ABSTRACT

Many fishes are hypothesized to use bile acids (BAs) as chemical cues, yet quantification of BAs in biological samples and the required methods remain limited. Here, we present an UHPLC-MS/MS method for simultaneous, sensitive, and rapid quantification of 15 BAs, including free, taurine, and glycine conjugated BAs, and application of the method to fecal samples from lake charr (Salvelinus namaycush). The analytes were separated on a C18 column with acetonitrile-water (containing 7.5mM ammonium acetate and 0.1% formic acid) as mobile phase at a flow rate of 0.25mL/min for 12min. BAs were monitored with a negative electrospray triple quadrupole mass spectrometer (Xevo TQ-S™). Calibration curves of 15 BAs were linear over the concentration range of 1.00-5,000ng/mL. Validation revealed that the method was specific, accurate, and precise. The method was applied to quantitative analysis of feces extract of fry lake charr and the food they were eating. The concentrations of analytes CA, TCDCA, TCA, and CDCA were 242.3, 81.2, 60.7, and 36.2ng/mg, respectively. However, other taurine conjugated BAs, TUDCA, TDCA, and THDCA, were not detected in feces of lake charr. Interestingly, TCA and TCDCA were detected at high concentrations in food pellets, at 71.9 and 38.2ng/mg, respectively. Application of the method to feces samples from lake charr supported a role of BAs as chemical cues, and will enhance further investigation of BAs as chemical cues in other fish species.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Methanol, SAJ first grade, ≥99.5%
Sigma-Aldrich
Chloroform, SAJ first grade, ≥99.0%, contains 0.4-0.8% ethanol
Sigma-Aldrich
Chloroform, JIS special grade, ≥99.0%
Sigma-Aldrich
Ethanol, JIS special grade, 94.8-95.8%
Sigma-Aldrich
Methanol, SAJ special grade
Sigma-Aldrich
Acetonitrile solution, contains 10.0% acetone, 0.05% formic acid, 40.0% 2-propanol
Sigma-Aldrich
Ethanol, JIS first grade, 94.8-95.8%
Sigma-Aldrich
Chloroform, JIS 300, ≥99.0%, for residue analysis
Sigma-Aldrich
Methanol, JIS 300, ≥99.8%, for residue analysis
Sigma-Aldrich
Methanol, JIS special grade, ≥99.8%
Sigma-Aldrich
Ammonium acetate solution, 50 % (w/v), for copper determination
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Supelco
Chloroform, suitable for HPLC, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Chloroform, ACS reagent, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Ammonium acetate, 99.999% trace metals basis
Sigma-Aldrich
Golgicide A, ≥98% (HPLC)
Sigma-Aldrich
Acetonitrile solution, contains 0.05 % (v/v) trifluoroacetic acid
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) formic acid, suitable for HPLC
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) trifluoroacetic acid, suitable for HPLC
Sigma-Aldrich
Chloroform, ACS reagent, ≥99.8%, contains amylenes as stabilizer
Sigma-Aldrich
Sodium trichloroacetate, 97%
Sigma-Aldrich
Acetonitrile solution, contains 0.05 % (w/v) ammonium formate, 5 % (v/v) water, 0.1 % (v/v) formic acid, suitable for HPLC
Sigma-Aldrich
Methanol, NMR reference standard
Sigma-Aldrich
Chloroform, anhydrous, ≥99%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Chloroform, anhydrous, contains amylenes as stabilizer, ≥99%
Sigma-Aldrich
Methanol, suitable for HPLC
Sigma-Aldrich
Chloroform, suitable for HPLC
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, 99.93%
Sigma-Aldrich
Ammonium acetate, BioXtra, ≥98%
Sigma-Aldrich
Chloroform, SAJ super special grade, ≥99.0%