Skip to Content
MilliporeSigma
  • Predator lipids induce paralytic shellfish toxins in bloom-forming algae.

Predator lipids induce paralytic shellfish toxins in bloom-forming algae.

Proceedings of the National Academy of Sciences of the United States of America (2015-04-29)
Erik Selander, Julia Kubanek, Mats Hamberg, Mats X Andersson, Gunnar Cervin, Henrik Pavia
ABSTRACT

Interactions among microscopic planktonic organisms underpin the functioning of open ocean ecosystems. With few exceptions, these organisms lack advanced eyes and thus rely largely on chemical sensing to perceive their surroundings. However, few of the signaling molecules involved in interactions among marine plankton have been identified. We report a group of eight small molecules released by copepods, the most abundant zooplankton in the sea, which play a central role in food webs and biogeochemical cycles. The compounds, named copepodamides, are polar lipids connecting taurine via an amide to isoprenoid fatty acid conjugate of varying composition. The bloom-forming dinoflagellate Alexandrium minutum responds to pico- to nanomolar concentrations of copepodamides with up to a 20-fold increase in production of paralytic shellfish toxins. Different copepod species exude distinct copepodamide blends that contribute to the species-specific defensive responses observed in phytoplankton. The signaling system described here has far reaching implications for marine ecosystems by redirecting grazing pressure and facilitating the formation of large scale harmful algal blooms.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Ethyl acetate
Sigma-Aldrich
Ethyl acetate
Sigma-Aldrich
Ethyl acetate, JIS special grade, ≥99.5%
Sigma-Aldrich
Ethyl acetate, SAJ first grade, ≥99.0%
Sigma-Aldrich
Ethyl acetate, JIS 1000, ≥99.5%, for residue analysis
Sigma-Aldrich
Ethyl acetate, anhydrous, 99.8%
Sigma-Aldrich
Nitrogen, ≥99.998%
Sigma-Aldrich
Pyridinium dichromate, 98%
Sigma-Aldrich
Ethyl acetate, ReagentPlus®, ≥99.8%
Sigma-Aldrich
n-Butyllithium solution, 2.7 M in heptane
Sigma-Aldrich
(L)-Dehydroascorbic acid
Sigma-Aldrich
Ethyl acetate, natural, ≥99%, FCC, FG
Sigma-Aldrich
N,O-Bis(trimethylsilyl)trifluoroacetamide, ≥99%
Sigma-Aldrich
Ethyl acetate, ≥99%, FCC, FG
Sigma-Aldrich
Ethyl acetate, JIS 300, ≥99.5%, for residue analysis
Sigma-Aldrich
6-Oxoheptanoic acid, technical grade, 90%
Sigma-Aldrich
Ethyl acetate, ACS reagent, ≥99.5%
Sigma-Aldrich
Ethyl acetate, suitable for HPLC
Sigma-Aldrich
n-Butyllithium solution, 11.0 M in hexanes
Sigma-Aldrich
n-Butyllithium solution, 2.5 M in hexanes
Sigma-Aldrich
n-Butyllithium solution, 1.6 M in hexanes
Sigma-Aldrich
n-Butyllithium solution, 2.0 M in cyclohexane
Sigma-Aldrich
2-Propanol, JIS special grade, ≥99.5%
Sigma-Aldrich
Ethanol, ≥99.5%, SAJ super special grade
Sigma-Aldrich
2-Propanol, suitable for HPLC
Sigma-Aldrich
2-Propanol, anhydrous, 99.5%
Supelco
Ethanol standards 10% (v/v), 10 % (v/v) in H2O, analytical standard
Sigma-Aldrich
Ethanol, ≥99.5%, suitable for HPLC
Sigma-Aldrich
2-Propanol, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
2-Propanol, SAJ first grade, ≥99.0%