Skip to Content
MilliporeSigma
  • Synthesis of mercaptopropyl-(phenylene)s-benzoates passivated gold nanoparticles: Implications for plasmonic photovoltaic cells.

Synthesis of mercaptopropyl-(phenylene)s-benzoates passivated gold nanoparticles: Implications for plasmonic photovoltaic cells.

Journal of colloid and interface science (2015-07-01)
Arxel de León, Eduardo Arias, Ivana Moggio, Carlos Gallardo-Vega, Ronald Ziolo, Oliverio Rodríguez, Silvana Trigari, Emilia Giorgetti, Carl Leibig, Dean Evans
ABSTRACT

The incorporation of gold nanoparticles in heterojunction solar cells is expected to increase the efficiency due to plasmon effects, but the literature studies are sometimes controversial. In this work, gold nanoparticles passivated with (Ph)n-(CH2)3SH (n=1, 2, 3) have been synthesized by reduction of tetrachloroauric acid with sodium borohydride in two ways: (1) one-phase where both the thiol and the gold salt are solubilized in a mixture of methanol with acetic acid: Au-s-(Ph)n or (2), two-phase, using tetraoctylammonium bromide (TOAB) to transfer gold from water to toluene where the thiol is solubilized, Au(TOAB)-s-(Ph)n. The morphological, experimental and simulated optical properties were studied and analyzed as a function of the thiol and of the synthetic procedure in order to correlate them with the efficiency of plasmonic hybrid solar cells in the following configuration ITO/PEDOT:PSS/P3HT:PCBM-C60:Au-nanoparticles/Field's metal, where PSS is poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate), P3HT is poly(3-hexylthiophene-2,5-diyl) and PCBM-C60 is [6,6]-Phenyl C61 butyric acid methyl ester. Our findings indicate that the gold nanoparticles incorporation is affecting the electrical properties of the active layer giving a maximum efficiency for Au-s-(Ph)3. Moreover, TOAB, which is usually used in the synthesis of thiol passivated gold nanoparticles, has negative effects in both plasmonic and electrical properties. This result is important for optoelectronic applications of gold nanoparticles prepared with any procedures that involve TOAB.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Sodium borohydride solution, ~12 wt. % in 14 M NaOH
Sigma-Aldrich
Sodium borohydride solution, 2.0 M in triethylene glycol dimethyl ether
Sigma-Aldrich
Methanol, SAJ first grade, ≥99.5%
Sigma-Aldrich
Methanol, JIS 300, ≥99.8%, for residue analysis
Sigma-Aldrich
Methanol, JIS special grade, ≥99.8%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, 99.93%
Sigma-Aldrich
Methanol, suitable for HPLC
Sigma-Aldrich
Methanol, SAJ special grade
Sigma-Aldrich
Methanol, NMR reference standard
Sigma-Aldrich
1,8-Diazabicyclo[5.4.0]undec-7-ene, 98%
Sigma-Aldrich
Ethyl isocyanate, 98%
Sigma-Aldrich
Benzoic acid, ACS reagent, ≥99.5%
Sigma-Aldrich
Benzoic acid, purified by sublimation, ≥99%
Sigma-Aldrich
Benzoic acid, ReagentPlus®, 99%
Sigma-Aldrich
Benzoic acid, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥99.9% (alkalimetric)
Sigma-Aldrich
Benzoic acid, meets analytical specification of Ph. Eur., BP, USP, FCC, E210, 99.5-100.5% (alkalimetric)
Supelco
Dichloromethane solution, contains 10 % (v/v) methanol
Sigma-Aldrich
Methanol solution, NMR reference standard, 4% in methanol-d4 (99.8 atom % D), NMR tube size 3 mm × 8 in.
Supelco
Methanol solution, contains 0.10 % (v/v) formic acid, UHPLC, suitable for mass spectrometry (MS), ≥99.5%
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%, poly-coated bottles
Sigma-Aldrich
VenPure® SF, powder
Sigma-Aldrich
Sodium borohydride, purum p.a., ≥96% (gas-volumetric)
Supelco
Dichloromethane, ≥99.9%
Sigma-Aldrich
Sodium borohydride, powder, ≥98.0%