Skip to Content
MilliporeSigma

Role of Ku70 in deubiquitination of Mcl-1 and suppression of apoptosis.

Cell death and differentiation (2014-04-29)
B Wang, M Xie, R Li, T K Owonikoko, S S Ramalingam, F R Khuri, W J Curran, Y Wang, X Deng
ABSTRACT

Mcl-1 is a unique antiapoptotic Bcl2 family member with a short half-life due to its rapid turnover through ubiquitination. We discovered that Ku70, a DNA double-strand break repair protein, functions as a deubiquitinase to stabilize Mcl-1. Ku70 knockout in mouse embryonic fibroblast (MEF) cells or depletion from human lung cancer H1299 cells leads to the accumulation of polyubiquitinated Mcl-1 and a reduction in its half-life and protein expression. Conversely, expression of exogenous Ku70 in Ku70(-/-) MEF cells restores Mcl-1 expression. Subcellular fractionation indicates that Ku70 extensively colocalizes with Mcl-1 in mitochondria, endoplasmic reticulum and nucleus in H1299 cells. Ku70 directly interacts with Mcl-1 via its C terminus (that is, aa 536-609), which is required and sufficient for deubiquitination and stabilization of Mcl-1, leading to suppression of apoptosis. Purified Ku70 protein directly deubiquitinates Mcl-1 by removing K48-linked polyubiquitin chains. Ku70 knockdown not only promotes Mcl-1 turnover but also enhances antitumor efficacy of the BH3-mimetic ABT-737 in human lung cancer xenografts. These findings identify Ku70 as a novel Mcl-1 deubiquitinase that could be a potential target for cancer therapy by manipulating Mcl-1 deubiquitination.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
MISSION® esiRNA, targeting mouse Usp2
Sigma-Aldrich
MISSION® esiRNA, targeting mouse Xrcc6
Sigma-Aldrich
MISSION® esiRNA, targeting mouse Usp9x
Sigma-Aldrich
MISSION® esiRNA, targeting human USP2
Sigma-Aldrich
MISSION® esiRNA, targeting human XRCC6
Sigma-Aldrich
MISSION® esiRNA, targeting human USP9X
Sigma-Aldrich
Z-Leu-Leu-Leu-al, ≥90% (HPLC)