MilliporeSigma
  • Home
  • Search Results
  • A Topotactic Synthetic Methodology for the Synthesis of Nanosized MFI Zeolites with Hierarchical Structures.

A Topotactic Synthetic Methodology for the Synthesis of Nanosized MFI Zeolites with Hierarchical Structures.

Chemistry (Weinheim an der Bergstrasse, Germany) (2018-06-12)
Ang Li, Xue Wang, Tao Wang, Huali Liu, Tunan Gao, Meihong Fan, Qisheng Huo, Zhen-An Qiao
ABSTRACT

Much effort has been invested in the designed synthesis of zeolites with nanosized and hierarchical structures in recent decades, on account of increasing demands in practical applications, especially catalysis. Herein, a new topotactic synthetic strategy is demonstrated to synthesize nanosized and hierarchical zeolites in a one-step procedure. By using silica spheres as the adjustable amorphous precursors and tetrapropylammonium hydroxide as a structure-directing agent, effortless control of both size and porosity can be achieved in this system with no extra templates. With a simple hydrothermal process, hierarchical zeolite spheres can be modified with acid cites (Al species incorporated in the framework). Benefitting from its mesoporosity, palladium nanoparticles are incorporated into the nanosized hierarchical zeolite, which makes the materials suitable for use in a cascade catalysis reaction of benzimidazole derivatives, including independent acid catalysis and hydrogenation sites. The nanocomposites show exceptional activity and stability in catalysis and recycling reaction. This strategy can be developed into other versatile and practicable scaffolds for advanced zeolite catalytic nanoreactor systems.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
4-(1H-Benzimidazol-1-yl)aniline, AldrichCPR
Sigma-Aldrich
(3-Mercaptopropyl)trimethoxysilane, 95%